37 research outputs found

    Perceptions of COVID-19 Vaccines: Lessons from Selected Populations Who Experience Discrimination in the Australian Healthcare System

    Full text link
    COVID-19 vaccination is particularly challenging among populations who have experienced discrimination in healthcare settings. This paper presents qualitative findings from in-depth interviews about COVID-19 vaccination conducted in Australia between October 2020 and November 2021. Data from four different studies are presented; each population has unique experiences of discrimination within the healthcare system: Aboriginal people; people who inject drugs (PWID); people living with HIV (PLHIV); and gay and bisexual men (GBM). Analyses were guided by the behavioural and social determinants model that forms the basis of the World Health Organizationā€™s ā€œdata for action: achieving high uptake of COVID-19 vaccinesā€ interim guidance. All populations viewed vaccination as necessary for community protection, although narratives of community care were most common among Aboriginal people. Concerns about vaccine safety were expressed by all participant groups, although participants living with HIV and GBM were more trusting of vaccines possibly because of their ongoing and usually positive past experiences with biomedical technologies for HIV management and sexual health. Aboriginal participants reported distrust of mainstream government and participants who inject drugs expressed a more generalised suspicion about COVID-19 and its origins. Practical problems related to transport, booking appointments for vaccination and so forth, were more common among participants living with HIV and GBM, possibly because these specific interviews were conducted throughout 2021 when vaccines were more available, whereas data for the other populations were collected before the vaccine rollout. Findings show that vaccine willingness is shaped by past experiences of discrimination in healthcare setting, but different histories of discrimination can differently impact vaccine willingness. Promotional messaging and delivery must take account of these important differences so to not treat these populations homogenously

    Clinical validation of a spectroscopic liquid biopsy for earlier detection of brain cancer

    Get PDF
    BackgroundDiagnostic delays impact the quality of life and survival of patients with brain tumors. Earlier and expeditious diagnoses in these patients are crucial to reduce the morbidities and mortalities associated with brain tumors. A simple, rapid blood test that can be administered easily in a primary care setting to efficiently identify symptomatic patients who are most likely to have a brain tumor would enable quicker referral to brain imaging for those who need it most.MethodsBlood serum samples from 603 patients were prospectively collected and analyzed. Patients either had non-specific symptoms that could be indicative of a brain tumor on presentation to the Emergency Department, or a new brain tumor diagnosis and referral to the neurosurgical unit, NHS Lothian, Scotland. Patient blood serum samples were analyzed using the DxcoverĀ® Brain Cancer liquid biopsy. This technology utilizes infrared spectroscopy combined with a diagnostic algorithm to predict the presence of intracranial disease.ResultsOur liquid biopsy approach reported an area under the receiver operating characteristic curve of 0.8. The sensitivity-tuned model achieves a 96% sensitivity with 45% specificity (NPV 99.3%) and identified 100% of glioblastoma multiforme patients. When tuned for a higher specificity, the model yields a sensitivity of 47% with 90% specificity (PPV 28.4%).ConclusionsThis simple, non-invasive blood test facilitates the triage and radiographic diagnosis of brain tumor patients while providing reassurance to healthy patients. Minimizing time to diagnosis would facilitate the identification of brain tumor patients at an earlier stage, enabling more effective, less morbid surgical and adjuvant care

    Visual group theory

    Get PDF

    UNBOUND

    Get PDF
    Featured here, are the extraordinary works of our graduating Fashion Design class. This accomplishment is truly a celebration of the tree years of passion, hard work, and dedication of our students. It\u27s our hope that the fashion industry will partake in the creative endeavors of the emerging designers from the Fashion Design program at Fanshawe College in London, Ontario.https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1002/thumbnail.jp

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetĀ® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetĀ® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Bioprocess monitoring applications of an innovative ATR-FTIR spectroscopy platform

    Get PDF
    Pharmaceutical manufacturing is reliant upon bioprocessing approaches to generate the range of therapeutic products that are available today. The high cost of production, susceptibility to process failure, and requirement to achieve consistent, high-quality product means that process monitoring is paramount during manufacturing. Process analytic technologies (PAT) are key to ensuring high quality product is produced at all stages of development. Spectroscopy based technologies are well suited as PAT approaches as they are non-destructive and require minimum sample preparation. This study explored the use of a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy platform, which utilises disposable internal reflection elements (IREs), as a method of upstream bioprocess monitoring. The platform was used to characterise organism health and to quantify cellular metabolites in growth media using quantification models to predict glucose and lactic acid levels both singularly and combined. Separation of the healthy and nutrient deficient cells within PC space was clearly apparent, indicating this technique could be used to characterise these classes. For the metabolite quantification, the binary models yielded R2 values of 0.969 for glucose, 0.976 for lactic acid. When quantifying the metabolites in tandem using a multi-output partial least squares model, the corresponding R2 value was 0.980. This initial study highlights the suitability of the platform for bioprocess monitoring and paves the way for future in-line developments

    Bioprocess Monitoring Applications of an Innovative ATR-FTIR Spectroscopy Platform

    No full text
    Pharmaceutical manufacturing is reliant upon bioprocessing approaches to generate the range of therapeutic products that are available today. The high cost of production, susceptibility to process failure, and requirement to achieve consistent, high-quality product means that process monitoring is paramount during manufacturing. Process analytic technologies (PAT) are key to ensuring high quality product is produced at all stages of development. Spectroscopy-based technologies are well suited as PAT approaches as they are non-destructive and require minimum sample preparation. This study explored the use of a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy platform, which utilises disposable internal reflection elements (IREs), as a method of upstream bioprocess monitoring. The platform was used to characterise organism health and to quantify cellular metabolites in growth media using quantification models to predict glucose and lactic acid levels both singularly and combined. Separation of the healthy and nutrient deficient cells within PC space was clearly apparent, indicating this technique could be used to characterise these classes. For the metabolite quantification, the binary models yielded R 2 values of 0.969 for glucose, 0.976 for lactic acid. When quantifying the metabolites in tandem using a multi-output partial least squares model, the corresponding R 2 value was 0.980. This initial study highlights the suitability of the platform for bioprocess monitoring and paves the way for future inline developments

    Ā© At-Sea Processors Association Association

    No full text
    Building a clear understanding of the North Pacific, Bering Sea, and Arctic Ocean ecosystems that enables effective management and sustainable use of marine resources. North Pacifi
    corecore