36 research outputs found

    Analysis of complex stability and allosteric interaction in the imidazole glycerol phosphate synthase complex

    Get PDF
    Imidazole glycerol phosphate synthase (ImGPS) is a bi-enzyme complex that consists of the glutaminase subunit HisH and the cyclase subunit HisF. HisH hydrolyzes glutamine to glutamate and ammonia, which is transported through a channel to the active site of HisF where it reacts with N´-[(5´-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) to imidazole glycerol phosphate (ImGP) and 5-aminoimidazole-4-carboxamide ribotide (AICAR). ImGP and AICAR are further used in histidine and de novo purine biosynthesis, rendering ImGPS a key metabolic enzyme. The sequential HisH and HisF reactions are tightly coupled: glutaminase HisH activity is allosterically induced by the binding of PRFAR to the active site of HisF. The structural bases for complex formation between HisH and HisF and for the coupling of their catalytic activities are poorly understood. Thus, HisF:HisH is a paradigm for the study of protein-protein interactions and allosteric regulation. Moreover, only plants, fungi, bacteria, and archaea are able to synthesize histidine. Thus, the inhibiton of ImGPS might be a potential therapeutic strategy to fight pathogenic microorganisms. In this context, recently, a peptide was identified that impedes the glutaminase activity in ImGPS from Thermotoga maritima (tm). It has been hypothesized that the peptide inhibits the catalytic activity of HisF:HisH by binding to tmHisF in the complex interface, however, the exact HisF:peptide interaction sites and the mode of inhibition remained elusive. Within the first part of this thesis, nuclear magnetic resonance (NMR) titration experiments demonstrated that the inhibitory peptide mainly interacts with structural elements and residues around positions 71-77 and 90-99 in HisF. Parts of this set of residues belong to the HisF:HisH interface and are thought to be involved in allosteric signal transduction, based on previous NMR and molecular dynamics data. This suggests that the peptide inhibits glutaminase activity by perturbing the interaction and allosteric communication between the HisF and HisH subunits. Within the second part of this thesis, residues of HisF that are crucial for its structural and functional interaction with HisH should be identified. For this purpose, it was planned to analyze the interaction of various combinations of HisF and HisH enzymes. However, these experiments could not be performed due to the insolubility of most of the tested proteins. In order to produce proteins that can be characterized, the primordial HisF and HisH enzymes from the last universal common ancestor (LUCA) were resurrected by ancestral sequence reconstruction (ASR). LUCA-HisF and LUCA-HisH formed a high-affinity complex; however, LUCA-HisH was catalytically inactive, probably due to inaccuracies of ASR. In contrast, LUCA-HisF was catalytically active and could be used for further analysis, which was performed as follows: Initial experiments showed that HisH from Zymomonas mobilis (zmHisH) tightly binds to LUCA-HisF but not to the present-day HisF from Pyrobaculum arsenaticum (paHisF), which are separated by 103 residues. Following the characterization of a reconstructed evolutionary intermediate linking LUCA-HisF and paHisF and the inspection of the ImGPS interface, the number of candidate HisF residues crucial for binding to zmHisH could be narrowed to nine. Subsequent in silico mutagenesis based on homology modeling indicated that a single phenylalanine at position 74 in HisF was most important for binding to zmHisH. The decisive role of this “hot spot” residue for complex formation between HisF and zmHisH was confirmed by extensive experimental site-directed mutagenesis. Subsequently, primordial HisF proteins were also utilized to disentangle mechanistic principles of allosteric communication with HisH. In this context, no glutaminase activity was observed for tmHisH when bound to LUCA-HisF with PRFAR. However, the crystal structure of LUCA-HisF:tmHisH with bound glutamine revealed no significant differences compared to the catalytically active tmHisF:tmHisH complex. LUCA-HisF and tmHisF are separated by 79 residues. Although the number of potentially important residue differences could be reduced to 69 with the help of a primordial enzyme that links LUCA-HisF and tmHisF and by means of computational analysis, residues that are decisive for allostery could not be identified by this approach. Taken together, the results of this thesis show that peptides interrupting allosteric inter-subunit communication and molecular fossils being resurrected by ASR can contribute to unraveling the structure-function relationship of multi-enzyme complexes such as ImGPS

    Evidence for the Existence of Elaborate Enzyme Complexes in the Paleoarchean Era

    Get PDF
    International audience: Due to the lack of macromolecular fossils, the enzymatic repertoire of extinct species has remained largely unknown to date. In an attempt to solve this problem, we have characterized a cyclase subunit (HisF) of the imidazole glycerol phosphate synthase (ImGP-S), which was reconstructed from the era of the last universal common ancestor of cellular organisms (LUCA). As observed for contemporary HisF proteins, the crystal structure of LUCA-HisF adopts the (βα)8-barrel architecture, one of the most ancient folds. Moreover, LUCA-HisF (i) resembles extant HisF proteins with regard to internal 2-fold symmetry, active site residues, and a stabilizing salt bridge cluster, (ii) is thermostable and shows a folding mechanism similar to that of contemporary (βα)8-barrel enzymes, (iii) displays high catalytic activity, and (iv) forms a stable and functional complex with the glutaminase subunit (HisH) of an extant ImGP-S. Furthermore, we show that LUCA-HisF binds to a reconstructed LUCA-HisH protein with high affinity. Our findings suggest that the evolution of highly efficient enzymes and enzyme complexes has already been completed in the LUCA era, which means that sophisticated catalytic concepts such as substrate channeling and allosteric communication existed already 3.5 billion years ago

    Mitochondrial dysfunction in liver failure requiring transplantation.

    Get PDF
    Liver failure is a heterogeneous condition which may be fatal and the primary cause is frequently unknown. We investigated mitochondrial oxidative phosphorylation in patients undergoing liver transplantation. We studied 45 patients who had liver transplantation due to a variety of clinical presentations. Blue native polyacrylamide gel electrophoresis with immunodetection of respiratory chain complexes I-V, biochemical activity of respiratory chain complexes II and IV and quantification of mitochondrial DNA (mtDNA) copy number were investigated in liver tissue collected from the explanted liver during transplantation. Abnormal mitochondrial function was frequently present in this cohort: ten of 40 patients (25 %) had a defect of one or more respiratory chain enzyme complexes on blue native gels, 20 patients (44 %) had low activity of complex II and/or IV and ten (22 %) had a reduced mtDNA copy number. Combined respiratory chain deficiency and reduced numbers of mitochondria were detected in all three patients with acute liver failure. Low complex IV activity in biliary atresia and complex II defects in cirrhosis were common findings. All six patients diagnosed with liver tumours showed variable alterations in mitochondrial function, probably due to the heterogeneity of the presenting tumour. In conclusion, mitochondrial dysfunction is common in severe liver failure in non-mitochondrial conditions. Therefore, in contrast to the common practice detection of respiratory chain abnormalities in liver should not restrict the inclusion of patients for liver transplantation. Furthermore, improving mitochondrial function may be targeted as part of a complex therapy approach in different forms of liver diseases

    Results of multigene panel testing in familial cancer cases without genetic cause demonstrated by single gene testing

    Get PDF
    We have surveyed 191 prospectively sampled familial cancer patients with no previously detected pathogenic variant in the BRCA1/2, PTEN, TP53 or DNA mismatch repair genes. In all, 138 breast cancer (BC) cases, 34 colorectal cancer (CRC) and 19 multiple early-onset cancers were included. A panel of 44 cancer-predisposing genes identified 5% (9/191) pathogenic or likely pathogenic variants and 87 variants of uncertain significance (VUS). Pathogenic or likely pathogenic variants were identified mostly in familial BC individuals (7/9) and were located in 5 genes: ATM (3), BRCA2 (1), CHEK2 (1), MSH6 (1) and MUTYH (1), followed by multiple early-onset (2/9) individuals, affecting the CHEK2 and ATM genes. Eleven of the 87 VUS were tested, and 4/11 were found to have an impact on splicing by using a minigene splicing assay. We here report for the first time the splicing anomalies using this assay for the variants ATM c.3806A > G and BUB1 c.677C >T, whereas CHEK1 c.61G > A did not result in any detectable splicing anomaly. Our study confirms the presence of pathogenic or likely pathogenic variants in genes that are not routinely tested in the context of the above-mentioned clinical phenotypes. Interestingly, more than half of the pathogenic germline variants were found in the moderately penetrant ATM and CHEK2 genes, where only truncating variants from these genes are recommended to be reported in clinical genetic testing practice

    Identification of genetic variants for clinical management of familial colorectal tumors

    Get PDF
    Background: The genetic mechanisms for families who meet the clinical criteria for Lynch syndrome (LS) but do not carry pathogenic variants in the mismatch repair (MMR) genes are still undetermined. We aimed to study the potential contribution of genes other than MMR genes to the biological and clinical characteristics of Norwegian families fulfilling Amsterdam (AMS) criteria or revised Bethesda guidelines. Methods: The Hereditary Cancer Biobank of the Norwegian Radium Hospital was interrogated to identify individuals with a high risk of developing colorectal cancer (CRC) for whom no pathogenic variants in MMR genes had been found in routine diagnostic DNA sequencing. Forty-four cancer susceptibility genes were selected and analyzed by using our in-house designed TruSeq amplicon-based assay for targeted sequencing. RNA splicing-and protein-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as likely to affect splicing were experimentally analyzed by resorting to minigene assays. Results: We identified a patient who met the revised Bethesda guidelines and carried a likely pathogenic variant in CHEK2 (c.470 T > C, p.I157T). In addition, 25 unique VUS were identified in 18 individuals, of which 2 exonic variants (MAP3K1 c.764A > G and NOTCH3 c.5854G > A) were analyzed in the minigene splicing assay and found not to have an effect on RNA splicing. Conclusions: Among high-risk CRC patients that fulfill the AMS criteria or revised Bethesda guidelines, targeted gene sequencing identified likely pathogenic variant and VUS in other genes than the MMR genes (CHEK2, NOTCH3 and MAP3K1). Our study suggests that the analysis of genes currently excluded from routine molecular diagnostic screens may confer cancer susceptibility

    Genetic variants of prospectively demonstrated phenocopies in BRCA1/2 kindreds

    Get PDF
    Background: In kindreds carrying path_BRCA1/2 variants, some women in these families will develop cancer despite testing negative for the family's pathogenic variant. These families may have additional genetic variants, which not only may increase the susceptibility of the families' path_BRCA1/2, but also be capable of causing cancer in the absence of the path_BRCA1/2 variants. We aimed to identify novel genetic variants in prospectively detected breast cancer (BC) or gynecological cancer cases tested negative for their families' pathogenic BRCA1/2 variant (path_BRCA1 or path_BRCA2). Methods: Women with BC or gynecological cancer who had tested negative for path_BRCA1 or path_BRCA2 variants were included. Forty-four cancer susceptibility genes were screened for genetic variation through a targeted amplicon-based sequencing assay. Protein- and RNA splicing-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as the ones most likely affecting pre-mRNA splicing were experimentally analyzed in a minigene assay. Results: We identified 48 women who were tested negative for their family's path_BRCA1 (n = 13) or path_BRCA2 ( n = 35) variants. Pathogenic variants in the ATM, BRCA2, MSH6 and MUTYH genes were found in 10% (5/48) of the cases, of whom 15% (2/13) were from path_BRCA1 and 9% (3/35) from path_ BRCA2 families. Out of the 26 unique VUS, 3 (12%) were predicted to affect RNA splicing (APC c. 721G > A, MAP3K1 c.764A > G and MSH2 c.815C > T). However, by using a minigene, assay we here show that APC c. 721G > A does not cause a splicing defect, similarly to what has been recently reported for the MAP3K1 c.764A > G. The MSH2 c.815C > T was previously described as causing partial exon skipping and it was identified in this work together with the path_ BRCA2 c.9382C > T (p.R3128X). Conclusion: All women in breast or breast/ovarian cancer kindreds would benefit from being offered genetic testing irrespective of which causative genetic variants have been demonstrated in their relatives

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health); doi: https://doi.org/10.13039/100011272; Grant(s): 305444, 305444Funder: Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness); doi: https://doi.org/10.13039/501100003329Funder: Generalitat de Catalunya (Government of Catalonia); doi: https://doi.org/10.13039/501100002809Funder: EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj); doi: https://doi.org/10.13039/501100008530Funder: Instituto Nacional de Bioinformática ELIXIR Implementation Studies Centro de Excelencia Severo OchoaFunder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics

    Solving unsolved rare neurological diseases-a Solve-RD viewpoint.

    Get PDF
    Funder: Durch Princess Beatrix Muscle Fund Durch Speeren voor Spieren Muscle FundFunder: University of Tübingen Medical Faculty PATE programFunder: European Reference Network for Rare Neurological Diseases | 739510Funder: European Joint Program on Rare Diseases (EJP-RD COFUND-EJP) | 44140962

    Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases.

    Get PDF
    For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient's data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe
    corecore