61 research outputs found

    Seed production, infestation, and viability in Acacia tortilis (synonym: Vachellia tortilis) and Acacia robusta (synonym: Vachellia robusta) across the Serengeti rainfall gradient

    Get PDF
    Tree recruitment in savannas proceeds in multiple stages characterized by successive filters occurring at the seed and seedling stages. The “demographic bottleneck” hypothesis suggests that such filters ultimately restrict tree density and prevent trees from dominating grasses in savannas, but many of the demographic transitions underlying this assumption have not been quantified. We investigated how short- (1–2 years) and long-term (40 + years) rainfall patterns influenced seed production, infestation, and viability for two dominant species, Acacia robusta and Acacia tortilis across the Serengeti ecosystem mean annual precipitation gradient over a two-year period. We found that neither production, nor infestation, nor viability was influenced by rainfall. Pod production differed between species and increased with tree height in A. robusta. Mean infestation proportion in 2013 was higher (mean ± SE; 0.28 ± 0.08) in A. tortilis than in A. robusta (0.11 ± 0.05) but the trend reversed in 2014, when A. tortilis (0.33 ± 0.10) had lower infestation than A. robusta (0.61 ± 0.09). Under laboratory conditions, A. tortilis and A. robusta seeds had maximum germination (= viability) proportions of 70 and 20%, respectively. Mean seed viability was more than five-fold higher (0.46 ± 0.19) in A. tortilis than in A. robusta (0.08 ± 0.10). Our study has produced important estimates for seed stage demographic dynamics that can be used for modeling tree dynamics in Serengeti system, and savannas in general

    Grass competition overwhelms effects of herbivores and precipitation on early tree establishment in Serengeti

    No full text
    1. Savanna ecosystems span a diverse range of climates, edaphic conditions and disturbance regimes, the complexity of which has stimulated long‐standing interest in the mechanisms that maintain tree‐grass coexistence. One hypothesis suggests that tree establishment is strongly limited by one or several demographic bottlenecks at early stages of the tree life cycle. A major impediment to testing this hypothesis is the lack of data on the relative strengths of different bottlenecks across key environmental gradients. 2. To identify demographic bottlenecks that limit early tree establishment (0‐18 months), we conducted a series of transplant experiments with two savanna trees species (Acacia robusta and A. tortilis) across a natural rainfall and soil fertility gradient in the Serengeti ecosystem, Tanzania. We tested the interactive effects of precipitation, herbivory, seed scarification, grass competition, water limitation and tree species identity on two key life stages: germination and early seedling survival (0‐2 months) and juvenile seedling survival (2‐18 months). 3. Germination and early seedling survival increased as a function of rainfall, in the absence of herbivores and when seeds were scarified. Juvenile seedling survival, in contrast, decreased with rainfall but increased in the absence of herbivores. Grass removal had the single strongest (positive) effect on juvenile seedling survival of any treatment. Soil moisture monitoring and grass‐addition treatments revealed that grasses negatively affected seedlings in ways that were not necessarily linked to soil moisture. 4. A demographic model combining all effects across early life stages showed that the strength of grass competition on juvenile seedling survival was the key factor limiting early tree establishment. While rainfall had an unexpected opposing effect on the two life stages, the net effect of mean annual precipitation on early tree establishment was positive. 5. Synthesis: Successful tree establishment in Serengeti is maximized by a seemingly unlikely sequence of events: (1) scarification of seeds by browsers, (2) heavy rainfall to promote germination, (3) intensive grazing (but absence of browsers) and (4) dry conditions during juvenile seedling growth (>2 months) to reduce competition with grasses. By considering a wide suite of conditions and their interactions, our experimental results are relevant to ongoing debates about savanna vegetation dynamics and structural shifts in tree:grass ratios

    Predicted Impact of Barriers to Migration on the Serengeti Wildebeest Population

    Get PDF
    The Serengeti wildebeest migration is a rare and spectacular example of a once-common biological phenomenon. A proposed road project threatens to bisect the Serengeti ecosystem and its integrity. The precautionary principle dictates that we consider the possible consequences of a road completely disrupting the migration. We used an existing spatially-explicit simulation model of wildebeest movement and population dynamics to explore how placing a barrier to migration across the proposed route (thus creating two disjoint but mobile subpopulations) might affect the long-term size of the wildebeest population. Our simulation results suggest that a barrier to migration—even without causing habitat loss—could cause the wildebeest population to decline by about a third. The driver of this decline is the effect of habitat fragmentation (even without habitat loss) on the ability of wildebeest to effectively track temporal shifts in high-quality forage resources across the landscape. Given the important role of the wildebeest migration for a number of key ecological processes, these findings have potentially important ramifications for ecosystem biodiversity, structure, and function in the Serengeti

    Anthropogenic modifications to fire regimes in the wider Serengeti‐Mara ecosystem

    Get PDF
    Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti‐Mara show high spatial variability—with number of fires and ignition date mirroring mean annual precipitation. The short‐term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems

    Comment on "The extent of forest in dryland biomes"

    Get PDF
    Bastin et al (Reports, 12 May 2017, p. 635) infer forest as more globally extensive than previously estimated using tree cover data. However, their forest definition does not reflect ecosystem function or biotic composition. These structural and climatic definitions inflate forest estimates across the tropics and undermine conservation goals, leading to inappropriate management policies and practices in tropical grassy ecosystems

    Anthropogenic modifications to fire regimes in the wider Serengeti-Mara ecosystem

    Get PDF
    Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti‐Mara show high spatial variability—with number of fires and ignition date mirroring mean annual precipitation. The short‐term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems.Natural Environment Research Council, Grant/Award Number: JZG10015; Leverhulme Trust, Grant/Award Number: IN‐2014‐022; Vetenskapsrådet; Sida and Formas, Grant/Award Number: 2016‐06355.http://wileyonlinelibrary.com/journal/gcbhj2019Zoology and Entomolog

    Structural diversity and tree density drives variation in the biodiversity-ecosystem function relationship of woodlands and savannas

    Get PDF
    Positive biodiversity-ecosystem function relationships (BEFRs) have been widely documented, but it is unclear if BEFRs should be expected in disturbance-driven systems. Disturbance may limit competition and niche differentiation, which are frequently posited to underlie BEFRs. We provide the first exploration of the relationship between tree species diversity and biomass, one measure of ecosystem function, across southern African woodlands and savannas, an ecological system rife with disturbance from fire, herbivores and humans. We used >1000 vegetation plots distributed across 10 southern African countries, and structural equation modelling, to determine the relationship between tree species diversity and aboveground woody biomass, accounting for interacting effects of resource availability, disturbance by fire, tree stem density and vegetation type. We found positive effects of tree species diversity on aboveground biomass, operating via increased structural diversity. The observed BEFR was highly dependent on organismal density, with a minimum threshold of c. 180 mature stems ha-1. We found that water availability mainly affects biomass indirectly, via increasing species diversity. The study underlines the close association between tree diversity, ecosystem structure, environment and function in highly disturbed savannas and woodlands. We suggest that tree diversity is an under-appreciated determinant of wooded ecosystem structure and function
    corecore