1,068 research outputs found

    Inference and Evaluation of the Multinomial Mixture Model for Text Clustering

    Full text link
    In this article, we investigate the use of a probabilistic model for unsupervised clustering in text collections. Unsupervised clustering has become a basic module for many intelligent text processing applications, such as information retrieval, text classification or information extraction. The model considered in this contribution consists of a mixture of multinomial distributions over the word counts, each component corresponding to a different theme. We present and contrast various estimation procedures, which apply both in supervised and unsupervised contexts. In supervised learning, this work suggests a criterion for evaluating the posterior odds of new documents which is more statistically sound than the "naive Bayes" approach. In an unsupervised context, we propose measures to set up a systematic evaluation framework and start with examining the Expectation-Maximization (EM) algorithm as the basic tool for inference. We discuss the importance of initialization and the influence of other features such as the smoothing strategy or the size of the vocabulary, thereby illustrating the difficulties incurred by the high dimensionality of the parameter space. We also propose a heuristic algorithm based on iterative EM with vocabulary reduction to solve this problem. Using the fact that the latent variables can be analytically integrated out, we finally show that Gibbs sampling algorithm is tractable and compares favorably to the basic expectation maximization approach

    Spontaneous Symmetry Breaking with Abnormal Number of Nambu-Goldstone Bosons and Kaon Condensate

    Get PDF
    We describe a class of relativistic models incorporating finite density of matter in which spontaneous breakdown of continuous symmetries leads to a lesser number of Nambu-Goldstone bosons than that required by the Goldstone theorem. This class, in particular, describes the dynamics of the kaon condensate in the color-flavor locked phase of high density QCD. We describe the spectrum of low energy excitations in this dynamics and show that, despite the presence of a condensate and gapless excitations, this system is not a superfluid.Comment: 5 pages, 1 figure, REVTeX. Minor revisions made and 2 new references added. To appear in Phys. Rev. Let

    Einführung in das Schwerpunktthema

    Get PDF
    Einführung in das Schwerpunktthem

    Spin-wave Scattering in the Effective Lagrangian Perspective

    Full text link
    Nonrelativistic systems exhibiting collective magnetic behavior are analyzed in the framework of effective Lagrangians. The method, formulating the dynamics in terms of Goldstone bosons, allows to investigate the consequences of spontaneous symmetry breaking from a unified point of view. Low energy theorems concerning spin-wave scattering in ferro- and antiferromagnets are established, emphasizing the simplicity of actual calculations. The present work includes approximate symmetries and discusses the modification of the low energy structure imposed by an external magnetic and an anisotropy field, respectively. Throughout the paper, analogies between condensed matter physics and Lorentz-invariant theories are pointed out, demonstrating the universal feature of the effective Lagrangian technique.Comment: Published versio

    Operator Product Expansion and Quark-Hadron Duality: Facts and Riddles

    Full text link
    We review the status of the practical operator product expansion (OPE), when applied to two-point correlators of QCD currents which interpolate to mesonic resonances, in view of the violations of local quark-hadron duality. Covered topics are: a mini-review of mesonic QCD sum rules in vacuum, at finite temperature, or at finite baryon density, a comparison of model calculations of current-current correlation functions in 2D and 4D with the OPE expression, a discussion of meson distribution amplitudes in the light of nonperturbatively nonlocal modifications of the OPE, and a reorganization of the OPE which (partially) resums powers of covariant derivatives.Comment: now 68 pages, 29 figures (1 figure added), habilitation thesis, mild restructuring, typos corrected, about 30 references and corresponding text added, version to be published in Prog. Part. Nucl. Phy

    Determination of the Michel Parameters rho, xi, and delta in tau-Lepton Decays with tau --> rho nu Tags

    Full text link
    Using the ARGUS detector at the e+ee^+ e^- storage ring DORIS II, we have measured the Michel parameters ρ\rho, ξ\xi, and ξδ\xi\delta for τ±l±ννˉ\tau^{\pm}\to l^{\pm} \nu\bar\nu decays in τ\tau-pair events produced at center of mass energies in the region of the Υ\Upsilon resonances. Using τρν\tau^\mp \to \rho^\mp \nu as spin analyzing tags, we find ρe=0.68±0.04±0.08\rho_{e}=0.68\pm 0.04 \pm 0.08, ξe=1.12±0.20±0.09\xi_{e}= 1.12 \pm 0.20 \pm 0.09, ξδe=0.57±0.14±0.07\xi\delta_{e}= 0.57 \pm 0.14 \pm 0.07, ρμ=0.69±0.06±0.08\rho_{\mu}= 0.69 \pm 0.06 \pm 0.08, ξμ=1.25±0.27±0.14\xi_{\mu}= 1.25 \pm 0.27 \pm 0.14 and ξδμ=0.72±0.18±0.10\xi\delta_{\mu}= 0.72 \pm 0.18 \pm 0.10. In addition, we report the combined ARGUS results on ρ\rho, ξ\xi, and ξδ\xi\delta using this work und previous measurements.Comment: 10 pages, well formatted postscript can be found at http://pktw06.phy.tu-dresden.de/iktp/pub/desy97-194.p

    Super-resolution lightwave tomography of electronic bands in quantum materials

    Get PDF
    Searching for quantum functionalities requires access to the electronic structure, constituting the foundation of exquisite spin-valley-electronic, topological, and many-body effects. All-optical band-structure reconstruction could directly connect electronic structure with the coveted quantum phenomena if strong lightwaves transported localized electrons within preselected bands. Here, we demonstrate that harmonic sideband (HSB) generation in monolayer tungsten diselenide creates distinct electronic interference combs in momentum space. Locating these momentum combs in spectroscopy enables super-resolution tomography of key band-structure details in situ. We experimentally tuned the optical-driver frequency by a full octave and show that the predicted super-resolution manifests in a critical intensity and frequency dependence of HSBs. Our concept offers a practical, all-optical, fully three-dimensional tomography of electronic structure even in microscopically small quantum materials, band by band

    Whole-genome sequencing reveals new Alzheimer's disease-associated rare variants in loci related to synaptic function and neuronal development

    Get PDF
    Introduction Genome-wide association studies have led to numerous genetic loci associated with Alzheimer's disease (AD). Whole-genome sequencing (WGS) now permits genome-wide analyses to identify rare variants contributing to AD risk. Methods We performed single-variant and spatial clustering–based testing on rare variants (minor allele frequency [MAF] ≤1%) in a family-based WGS-based association study of 2247 subjects from 605 multiplex AD families, followed by replication in 1669 unrelated individuals. Results We identified 13 new AD candidate loci that yielded consistent rare-variant signals in discovery and replication cohorts (4 from single-variant, 9 from spatial-clustering), implicating these genes: FNBP1L, SEL1L, LINC00298, PRKCH, C15ORF41, C2CD3, KIF2A, APC, LHX9, NALCN, CTNNA2, SYTL3, and CLSTN2. Discussion Downstream analyses of these novel loci highlight synaptic function, in contrast to common AD-associated variants, which implicate innate immunity and amyloid processing. These loci have not been associated previously with AD, emphasizing the ability of WGS to identify AD-associated rare variants, particularly outside of the exome
    corecore