32 research outputs found

    The relative abundance and transcriptional activity of marine sponge-associated microorganisms emphasizing groups involved in sulfur cycle

    No full text
    During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle

    A stable foraging polymorphism buffers Galapagos sea lions against environmental change

    No full text
    Schwarz J, DeRango EJ, Zenth F, et al. A stable foraging polymorphism buffers Galapagos sea lions against environmental change. Current Biology. 2022.Understanding the ability of animals to cope with a changing environment is critical in a world affected by anthropogenic disturbance.1 Individual foraging strategies may influence the coping ability of entire populations, as these strategies can be adapted to contrasting conditions, allowing populations with foraging polymorphisms to be more resilient toward environmental change.2,3 However, environmentally dependent fitness consequences of individual foraging strategies and their effects on population dynamics have not been conclusively documented.4,5 Here, we use biologging data from endangered Galapagos sea lion females (Zalophus wollebaeki) to show that benthically foraging individuals dig after sand-dwelling prey species while pelagic foragers hunt in more open waters. These specialized foraging behaviors result in distinct and temporally stable patterns of vibrissae abrasion. Using vibrissae length as a visual marker for the benthic versus pelagic foraging strategies, we furthermore uncovered an environment-dependent fitness trade-off between benthic and pelagic foragers, suggesting that the foraging polymorphism could help to buffer the population against the negative effects of climate change. However, demographic projections suggest that this buffering effect is unlikely to be sufficient to reverse the ongoing population decline of the past four decades.6 Our study shows how crucial a deeper understanding of behavioral polymorphisms can be for predicting how populations cope within a rapidly changing world. VIDEO ABSTRACT. Copyright © 2022 Elsevier Inc. All rights reserved

    A divergent Anaplasma phagocytophilum variant in an Ixodes tick from a migratory bird; Mediterranean basin

    No full text
    Anaplasma phagocytophilum (AP) has vast geographical and host ranges and causes disease in humans and domesticated animals. We investigated the role of northward migratory birds in the dispersal of tick-borne AP in the African-Western Palearctic. Ticks were collected from northward migratory birds trapped during spring migration of 2010 at two localities in the central Mediterranean Sea. AP DNA was detected by PCR (gltA and 16S rRNA) and variant determination was performed using ankA sequences. In total, 358 ticks were collected. One of 19 ticks determined as Ixodes was confirmed positive for AP DNA. The tick was collected from a woodchat shrike (Lanius senator senator) trapped in Greece, and molecularly determined to belong to the I. ricinus complex and sharing highest (95%) 16S RNA sequence identity to I. gibbosus. The ankA AP sequence exhibited highest similarity to sequences from rodents and shrews (82%) and ruminants (80%). Phylogenetic analyses placed it convincingly outside other clades, suggesting that it represents a novel AP variant. The divergent Ixodes species harboring a novel AP variant could either indicate an enzootic cycle involving co-evolution with birds, or dissemination from other regions by avian migration. None of the 331 Hyalomma marginatum sensu lato ticks, all immature stages, were positive for AP DNA, lending no evidence for the involvement of Hyalomma ticks transported by birds in the ecology of AP

    The absence of the drhm gene is not a marker for human-pathogenicity in European Anaplasma phagocytophilum strains

    No full text
    Background: Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophil granulocytes. It is transmitted by ticks of the Ixodes ricinus complex and causes febrile illness in humans and animals. The geographical distribution of A. phagocytophilum spans the Americas, Europe, Africa and Asia. However, human disease predominantly occurs in North America but is infrequently reported from Europe and Asia. In North American strains, the absence of the drhm gene has been proposed as marker for pathogenicity in humans whereas no information on the presence or absence of the drhm gene was available for A. phagocytophilum strains circulating in Europe. Therefore, we tested 511 European and 21 North American strains for the presence of drhm and compared the results to two other typing methods: multilocus sequence typing (MLST) and ankA-based typing. Results: Altogether, 99% (478/484) of the analyzable European and 19% (4/21) of the North American samples from different hosts were drhm-positive. Regarding the strains from human granulocytic anaplasmosis cases, 100% (35/35) of European origin were drhm-positive and 100% (14/14) of North American origin were drhm-negative. Human strains from North America and Europe were both part of MLST cluster 1. North American strains from humans belonged to ankA gene clusters 11 and 12 whereas European strains from humans were found in ankA gene cluster 1. However, the North American ankA gene clusters 11 and 12 were highly identical at the nucleotide level to the European cluster 1 with 97.4% and 95.2% of identity, respectively. Conclusions: The absence of the drhm gene in A. phagocytophilum does not seem to be associated with pathogenicity for humans per se, because all 35 European strains of human origin were drhm-positive. The epidemiological differences between North America and Europe concerning the incidence of human A. phagocytophilum infection are not explained by strain divergence based on MLST and ankA gene-based typing.Correction in: PARASITES &amp; VECTORS, Volume: 13, Issue: 1, Article Number: 497, DOI: 10.1186/s13071-020-04350-5</p

    Neutrophil-specific gain-of-function mutations in Nlrp3 promote development of cryopyrin-associated periodic syndrome.

    Full text link
    peer reviewedGain-of-function mutations in NLRP3 are responsible for a spectrum of autoinflammatory diseases collectively referred to as "cryopyrin-associated periodic syndromes" (CAPS). Treatment of CAPS patients with IL-1-targeted therapies is effective, confirming a central pathogenic role for IL-1β. However, the specific myeloid cell population(s) exhibiting inflammasome activity and sustained IL-1β production in CAPS remains elusive. Previous reports suggested an important role for mast cells (MCs) in this process. Here, we report that, in mice, gain-of-function mutations in Nlrp3 restricted to neutrophils, and to a lesser extent macrophages/dendritic cells, but not MCs, are sufficient to trigger severe CAPS. Furthermore, in patients with clinically established CAPS, we show that skin-infiltrating neutrophils represent a substantial biological source of IL-1β. Together, our data indicate that neutrophils, rather than MCs, can represent the main cellular drivers of CAPS pathology
    corecore