178 research outputs found

    The formation of topological defects in phase transitions

    Get PDF
    It was argued, and fought through numerical work that the results of non-dynamical Monte Carlo computer simulations cannot be applied to describe the formation of topological defects when the correlation length at the Ginzburg temperature is significantly smaller than the horizon size. To test the current hypothesis that infinite strings at formation are essentially described by Brownian walks of size the correlation length at the Ginzburg temperature, fields at the Ginzburg temperature were equilibrated. Infinite structure do not exist in equilibrium for reasonable definitions of the Ginzburg temperature, and horizons must be included in a proper treatment. A phase transition, from small-scale to large-scale string or domain wall structure, is found to occur very close to the Ginzburg temperature, in agreement with recent work. The formation process of domain walls and global strings were investigated through the breaking of initially ordered states. To mimic conditions in the early Universe, cooling times are chosen so that horizons exist in the sample volume when topological structure formation occurs. The classical fields are evolved in real-time by the numerical solution of Langevin equations of motion on a three dimensional spatial lattice. The results indicate that it is possible for most of the string energy to be in small loops, rather than in long strings, at formation

    Effects of ordinary and superconducting cosmic strings on primordial nucleosynthesis

    Get PDF
    A precise calculation is done of the primordial nucleosynthesis constraint on the energy per length of ordinary and superconducting cosmic strings. A general formula is provided for the constraint on the string tension for ordinary strings. Using the current values for the various parameters that describe the evolution of loops, the constraint for ordinary strings is G mu less than 2.2 x 10 to the minus 5 power. Our constraint is weaker than previously quoted limits by a factor of approximately 5. For superconducting loops, with currents generated by primordial magnetic fields, the constraint can be less or more stringent than this limit, depending on the strength of the magnetic field. It is also found in this case that there is a negligible amount of entropy production if the electromagnetic radiation from strings thermalizes with the radiation background

    A comprehensive assessment of benign genetic variability for neurodegenerative disorders

    Get PDF
    Over the last few years, as more and more sequencing studies have been performed, it has become apparent that the identification of pathogenic mutations is, more often than not, a complex issue. Here, with a focus on neurodegenerative diseases, we have performed a survey of coding genetic variability that is unlikely to be pathogenic. We have performed whole-exome sequencing in 478 samples derived from several brain banks in the United Kingdom and the United States of America. Samples were included when subjects were, at death, over 60 years of age, had no signs of neurological disease and were subjected to a neuropathological examination, which revealed no evidence of neurodegeneration. This information will be valuable to studies of genetic variability as a causal factor for neurodegenerative syndromes. We envisage it will be particularly relevant for diagnostic laboratories as a filter step to the results being produced by either genome-wide or gene-panel sequencing. We have made this data publicly available at www.alzforum.org/exomes/hex

    Auditory conflict and congruence in frontotemporal dementia.

    Get PDF
    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes

    Mendelian adult-onset leukodystrophy genes in Alzheimer´s disease. Critical influence of CSF1R and NOTCH3

    Get PDF
    Mendelian adult-onset leukodystrophies are a spectrum of rare inherited progressive neurodegenerative disorders affecting the white matter of the central nervous system. Among these, Cerebral Autosomal Dominant and Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL and CARASIL), Cerebroretinal vasculopathy (CRV), Metachromatic leukodystrophy (MLD), Hereditary diffuse Leukoencephalopathy with spheroids (HDLS), Vanishing white matter disease (VWM) present with rapidly progressive dementia as dominant feature and are caused by mutations in NOTCH3, HTRA1, TREX1, ARSA, CSF1R, EIF2B1, EIF2B2, EIF2B3, EIF2B4, EIF2B5, respectively. Given the rare incidence of these disorders and the lack of unequivocally diagnostic features, leukodystrophies are frequently misdiagnosed with common sporadic dementing diseases such as Alzheimer’s disease (AD), raising the question of whether these overlapping phenotypes may be explained by shared genetic risk factors. To investigate this intriguing hypothesis, we have combined gene expression analysis 1) in 6 different AD mouse strains (APPPS1, HOTASTPM, HETASTPM, TPM, TAS10 and TAU), at 5 different developmental stages (Embryo [E15], 2 months, 4 months, 8 months and 18 months), 2) in APPPS1 primary cortical neurons under stress conditions (oxygen-glucose deprivation) and single-variant and single-gene (c-alpha and SKAT tests) based genetic screening in a cohort composed of 332 Caucasian late-onset AD patients and 676 Caucasian elderly controls. Csf1r was significantly overexpressed (Log2FC>1, adj. p-val<0.05) in the cortex and hippocampus of aged HOTASTPM mice with extensive Aβ core dense plaque pathology. We identified 3 likely pathogenic mutations in CSF1R TK domain (p.L868R, p.Q691H and p.H703Y) in our discovery and validation cohort, composed of 465 AD and MCI Caucasian patients from the UK. Moreover, NOTCH3 was a significant hit in the c-alpha test (adj p-val = 0.01). Adult onset Mendelian leukodystrophy genes are not common factors implicated in AD. Nevertheless, our study suggests a potential pathogenic link between NOTCH3, CSF1R and sporadic LOAD, that warrants further investigation

    ACL injury prevention, more effective with a different way of motor learning?

    Get PDF
    What happens to the transference of learning proper jump-landing technique in isolation when an individual is expected to perform at a competitive level yet tries to maintain proper jump-landing technique? This is the key question for researchers, physical therapists, athletic trainers and coaches involved in ACL injury prevention in athletes. The need for ACL injury prevention is clear, however, in spite of these ongoing initiatives and reported early successes, ACL injury rates and the associated gender disparity have not diminished. One problem could be the difficulties with the measurements of injury rates and the difficulties with the implementation of thorough large scale injury prevention programs. A second issue could be the transition from conscious awareness during training sessions on technique in the laboratory to unexpected and automatic movements during a training or game involves complicated motor control adaptations. The purpose of this paper is to highlight the issue of motor learning in relation to ACL injury prevention and to post suggestions for future research. ACL injury prevention programs addressing explicit rules regarding desired landing positions by emphasizing proper alignment of the hip, knee, and ankle are reported in the literature. This may very well be a sensible way, but the use of explicit strategies may be less suitable for the acquisition of the control of complex motor skills (Maxwell et al. J Sports Sci 18:111-120, 2000). Sufficient literature on motor learning and it variations point in that direction

    Immune-related genetic enrichment in frontotemporal dementia:An analysis of genome-wide association studies

    Get PDF
    Background: Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Methods and findings: Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders—namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)—and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA) region on Chromosome (Chr) 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2), TBKBP1 (TBK1 binding protein 1), and PGBD5 (piggyBac transposable element derived 5). Functionally, we found that the expression of FTD–immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with FTD and is enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. Conclusions: We show immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to FTD risk. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD

    Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia

    Get PDF
    corecore