257 research outputs found

    New nanocomposites based on poly(benzoxazine-co-epoxy) matrix reinforced by novel graphene single and mixed blend fillers

    Get PDF
    We report new nanocomposites with poly(benzoxazine-co-epoxy) matrix reinforced with 1wt% graphene. Curabox 24-111, a benzoxazine resin was copolymerised with Epilok 60-566, a mixture of epoxy resins. Copolymerization was also carried out in the presence of different graphene powders namely Nanene-001 and Nanene-002, used as single fillers and as mixture (relative weight ratio 70:30 or 30:70). DSC results showed the addition of either single filler caused a delay in polymerisation and an increase in the exothermic peak temperature of the curing reaction with a related reduction in ΔHTotal. compared to the neat copolymer. Copolymerisation showed a 38% reduction and 24% increase in tensile modulus (E) compared to the neat polybenzoxazine and epoxy polymer, with a respective 18% and 30% reduction in tensile strength (TS). Nanocomposites with 0.7wt% Nanene-002 + 0.3wt% Nanene-001 showed the highest increase of 35% in TS, a 1.6% reduction in E and 36% increase in elongation at break (EB) compared to the neat copolymer matrix. Samples with 1wt% Nanene-001 showed the largest reduction of 21% in E, a 27% increase in TS and a 45% increase in EB. Additionally, TGA thermographs showed a 22℃ increase in the onset of degradation (300℃ to 322℃) improving the materials thermal stability

    Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

    Get PDF
    Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKC? immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection

    Probing the charging mechanisms of carbon nanomaterial polyelectrolytes

    No full text
    Chemical charging of single-walled carbon nanotubes (SWCNTs) and graphenes to generate soluble salts shows great promise as a processing route for electronic applications, but raises fundamental questions. The reduction potentials of highly-charged nanocarbon polyelectrolyte ions were investigated by considering their chemical reactivity towards metal salts/complexes in forming metal nanoparticles. The redox activity, degree of functionalisation and charge utilisation were quantified via the relative metal nanoparticle content, established using thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS). The fundamental relationship between the intrinsic nanocarbon electronic density of states and Coulombic effects during charging is highlighted as an important area for future research

    Draft genome sequences of two extensively drug-resistant strains of acinetobacter baumannii isolated from clinical samples in Pakistan

    Get PDF
    Infections in immunocompromised patients that are caused by extensively drug-resistant (XDR) Acinetobacter baumannii strains have been increasingly reported worldwide. In particular, carbapenem-resistant A. baumannii strains are a prominent cause of health care-associated infections. Here, we report draft genome assemblies for two clinical XDR A. baumannii isolates obtained from hospitalized patients in Pakistan
    • …
    corecore