108 research outputs found

    Insulin-Like Growth Factor-I Accelerates the Cell Cycle by Decreasing G1 Phase Length and Increases Cell Cycle Reentry in the Embryonic Cerebral Cortex

    Get PDF
    Neurogenesis in the developing cerebral cortex of mice occurs in the dorsal telencephalon between embryonic day 11 (E11) and E17, during which time the majority of cortical projection neurons and some glia are produced from proliferating neuroepithelial cells in the ventricular zone. The number of cells produced by this process is governed by several factors, including cell cycle kinetics and the proportion of daughter cells exiting the cell cycle after a given round of cell division. Th

    Insulin-like growth factor-I (IGF-I) inhibits neuronal apoptosis in the developing cerebral cortex in vivo

    Get PDF
    Increased expression of insulin-like growth factor-I (IGF-I) in embryonic neural progenitors in vivo has been shown to accelerate neuron proliferation in the neocortex. In the present study, the in vivo actions of (IGF-I) on naturally occurring neuron death in the cerebral cortex were investigated during embryonic and early postnatal development in a line of transgenic (Tg) mice that overexpress IGF-I in the brain, directed by nestin genomic regulatory elements, beginning at least as early as embryonic day (E) 13. The areal density of apoptotic cells (NA, cells/mm2) at E16 in the telencephalic wall of Tg and littermate control embryos was determined by immunostaining with an antibody specific for activated caspase-3. Stereological analyses were conducted to measure the numerical density (NV, cells/mm3) and total number of immunoreactive apoptotic cells in the cerebral cortex of nestin/IGF-I Tg and control mice at postnatal days (P) 0 and 5. The volume of cerebral cortex and both the NV and total number of all cortical neurons also were determined in both cerebral hemispheres at P0, P5 and P270. Apoptotic cells were rare in the embryonic telencephalic wall at E16. However, the overall NA of apoptotic cells was found to be significantly less by 46% in Tg embryos. The volume of the cerebral cortex was significantly greater in Tg mice at P0 (30%), P5 (13%) and P270 (26%). The total number of cortical neurons in Tg mice was significantly increased at P0 (29%), P5 (29%) and P270 (31%), although the NV of cortical neurons did not differ significantly between Tg and control mice at any age. Transgenic mice at P0 and P5 exhibited significant decreases in the NV of apoptotic cells in the cerebral cortex (31% and 39%, respectively). The vast majority of these apoptotic cells (>90%) were judged to be neurons by their morphological appearance. Increased expression of IGF-I inhibits naturally occurring (i.e. apoptotic) neuron death during early postnatal development of the cerebral cortex to a degree that sustains a persistent increase in total neuron number even in the adult animal

    Identification of developmental stage and anatomical fraction contributions to cell wall recalcitrance in switchgrass

    Get PDF
    Background Heterogeneity within herbaceous biomass can present important challenges for processing feedstocks to cellulosic biofuels. Alterations to cell wall composition and organization during plant growth represent major contributions to heterogeneity within a single species or cultivar. To address this challenge, the focus of this study was to characterize the relationship between composition and properties of the plant cell wall and cell wall response to deconstruction by NaOH pretreatment and enzymatic hydrolysis for anatomical fractions (stem internodes, leaf sheaths, and leaf blades) within switchgrass at various tissue maturities as assessed by differing internode. Results Substantial differences in both cell wall composition and response to deconstruction were observed as a function of anatomical fraction and tissue maturity. Notably, lignin content increased with tissue maturity concurrently with decreasing ferulate content across all three anatomical fractions. Stem internodes exhibited the highest lignin content as well as the lowest hydrolysis yields, which were inversely correlated to lignin content. Confocal microscopy was used to demonstrate that removal of cell wall aromatics (i.e., lignins and hydroxycinnamates) by NaOH pretreatment was non-uniform across diverse cell types. Non-cellulosic polysaccharides were linked to differences in cell wall response to deconstruction in lower lignin fractions. Specifically, leaf sheath and leaf blade were found to have higher contents of substituted glucuronoarabinoxylans and pectic polysaccharides. Glycome profiling demonstrated that xylan and pectic polysaccharide extractability varied with stem internode maturity, with more mature internodes requiring harsher chemical extractions to remove comparable glycan abundances relative to less mature internodes. While enzymatic hydrolysis was performed on extractives-free biomass, extractible sugars (i.e., starch and sucrose) comprised a significant portion of total dry weight particularly in stem internodes, and may provide an opportunity for recovery during processing

    Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    Get PDF
    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ~300 pc, with a width of ~50 pc, and a velocity dispersion of ~40 km s^(−1), which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s^(−1) pc^(−1). In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO^+, CS) are also detected in the molecular outflow: we measure an HCN(1–0)/CO(1–0) line ratio of ~1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (~1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ~1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows

    De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

    Get PDF
    Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3β (GSK-3β). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3β activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT–related megalencephaly syndromes

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology
    corecore