72 research outputs found

    An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set

    Get PDF
    We present results of an all-sky search in the Parkes Pulsar Timing Array (PPTA) Data Release 1 data set for continuous gravitational waves (GWs) in the frequency range from 5 × 10−9 to 2 × 10−7 Hz. Such signals could be produced by individual supermassive binary black hole systems in the early stage of coalescence. We phase up the pulsar timing array data set to form, for each position on the sky, two data streams that correspond to the two GW polarizations and then carry out an optimal search for GW signals on these data streams. Since no statistically significant GWs were detected, we place upper limits on the intrinsic GW strain amplitude h0 for a range of GW frequencies. For example, at 10−8 Hz our analysis has excluded with 95 per cent confidence the presence of signals with h0 ≄ 1.7 × 10−14. Our new limits are about a factor of 4 more stringent than those of Yardley et al. based on an earlier PPTA data set and a factor of 2 better than those reported in the recent Arzoumanian et al. paper. We also present PPTA directional sensitivity curves and find that for the most sensitive region on the sky, the current data set is sensitive to GWs from circular supermassive binary black holes with chirp masses of 109  M☉ out to a luminosity distance of about 100 Mpc. Finally, we set an upper limit of 4 × 10−3 Mpc−3 Gyr−1 at 95 per cent confidence on the coalescence rate of nearby (z ≀ 0.1) supermassive binary black holes in circular orbits with chirp masses of 1010  M☉

    NASA SpaceCube Next-Generation Artificial-Intelligence Computing for STP-H9-SCENIC on ISS

    Get PDF
    Recently, Artificial Intelligence (AI) and Machine Learning (ML) capabilities have seen an exponential increase in interest from academia and industry that can be a disruptive, transformative development for future missions. Specifically, AI/ML concepts for edge computing can be integrated into future missions for autonomous operation, constellation missions, and onboard data analysis. However, using commercial AI software frameworks onboard spacecraft is challenging because traditional radiation-hardened processors and common spacecraft processors cannot provide the necessary onboard processing capability to effectively deploy complex AI models. Advantageously, embedded AI microchips being developed for the mobile market demonstrate remarkable capability and follow similar size, weight, and power constraints that could be imposed on a space-based system. Unfortunately, many of these devices have not been qualified for use in space. Therefore, Space Test Program - Houston 9 - SpaceCube Edge-Node Intelligent Collaboration (STP-H9-SCENIC) will demonstrate inflight, cutting-edge AI applications on multiple space-based devices for next-generation onboard intelligence. SCENIC will characterize several embedded AI devices in a relevant space environment and will provide NASA and DoD with flight heritage data and lessons learned for developers seeking to enable AI/ML on future missions. Finally, SCENIC also includes new CubeSat form-factor GPS and SDR cards for guidance and navigation

    NANOGrav Constraints on Gravitational Wave Bursts with Memory

    Get PDF
    Among efforts to detect gravitational radiation, pulsar timing arrays are uniquely poised to detect "memory" signatures, permanent perturbations in spacetime from highly energetic astrophysical events such as mergers of supermassive black hole binaries. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) observes dozens of the most stable millisecond pulsars using the Arecibo and Green Bank radio telescopes in an effort to study, among other things, gravitational wave memory. We herein present the results of a search for gravitational wave bursts with memory (BWMs) using the first five years of NANOGrav observations. We develop original methods for dramatically speeding up searches for BWM signals. In the directions of the sky where our sensitivity to BWMs is best, we would detect mergers of binaries with reduced masses of 109 M. out to distances of 30 Mpc; such massive mergers in the Virgo cluster would be marginally detectable. We find no evidence for BWMs. However, with our non-detection, we set upper limits on the rate at which BWMs of various amplitudes could have occurred during the time spanned by our data-e.g., BWMs with amplitudes greater than 10(-13) must encounter the Earth at a rate less than 1.5 yr(-1)

    The NANOGrav Nine-year Data Set:Observations, Arrival Time Measurements, and Analysis of 37 Millisecond Pulsars

    Get PDF
    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or "red," timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals

    The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

    Get PDF
    We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background

    A Second Chromatic Timing Event of Interstellar Origin toward PSR J1713+0747

    Get PDF
    The frequency dependence of radio pulse arrival times provides a probe of structures in the intervening media. Demorest et al. was the first to show a short-term (~100–200 days) reduction in the electron content along the line of sight to PSR J1713+0747 in data from 2008 (approximately MJD 54750) based on an apparent dip in the dispersion measure of the pulsar. We report on a similar event in 2016 (approximately MJD 57510), with average residual pulse-arrival times ≈−3.0, −1.3, and −0.7 ÎŒs at 820, 1400, and 2300 MHz, respectively. Timing analyses indicate possible departures from the standard Îœ −2 dispersive-delay dependence. We discuss and rule out a wide variety of potential interpretations. We find the likeliest scenario to be lensing of the radio emission by some structure in the interstellar medium, which causes multiple frequency-dependent pulse arrival-time delays

    The International Pulsar Timing Array: First data release

    Get PDF
    International audienceThe highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limit

    From spin noise to systematics:stochastic processes in the first International Pulsar Timing Array data release

    Get PDF
    We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal description of the stochastic signals present in each pulsar. In addition to spin-noise and dispersion-measure (DM) variations, these models can include timing noise unique to a single observing system, or frequency band. We show the improved radio-frequency coverage and presence of overlapping data from different observing systems in the IPTA data set enables us to separate both system and band-dependent effects with much greater efficacy than in the individual pulsar timing array (PTA) data sets. For example, we show that PSR J1643-1224 has, in addition to DM variations, significant band-dependent noise that is coherent between PTAs which we interpret as coming from time-variable scattering or refraction in the ionized interstellar medium. Failing to model these different contributions appropriately can dramatically alter the astrophysical interpretation of the stochastic signals observed in the residuals. In some cases, the spectral exponent of the spin-noise signal can vary from 1.6 to 4 depending upon the model, which has direct implications for the long-term sensitivity of the pulsar to a stochastic gravitational-wave (GW) background. By using a more appropriate model, however, we can greatly improve a pulsar's sensitivity to GWs. For example, including system and band-dependent signals in the PSR J0437-4715 data set improves the upper limit on a fiducial GW background by similar to 60 per cent compared to a model that includes DM variations and spin-noise only

    The International Pulsar Timing Array:First data release

    Get PDF
    The highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available online) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limits placed by individual PTAs by a factor of similar to 2 and provides a 2 sigma limit on the dimensionless amplitude of a stochastic gravitational-wave background of 1.7 x 10(-15) at a frequency of 1 yr(-1). This is 1.7 times less constraining than the limit placed by Shannon et al., due mostly to the more recent, high-quality data they used
    • 

    corecore