19 research outputs found

    Silodosin oral films: Development, physico-mechanical properties and in vitro dissolution studies in simulated saliva

    Get PDF
    Sublingual film dosage forms for drugs used for fast symptomatic treatment have promise because they allow a rapid onset of action. The aim of this study was to prepare films of silodosin intended for sublingual administration for the symptomatic treatment of benign prostatic hyperplasia in men. Hydroxypropyl methylcellulose (HPMC) or hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were used as film-forming polymers. The effects of the polymers and the surfactant tocopherol polyethylene glycol succinate (TPGS) on the physico-mechanical properties and dissolution behavior of the films in simulated saliva were investigated. The eight silodosin oral films developed (F1–F8) contained 8 mg silodosin per 6 cm2 film and HPMC or HPMC-AS in drug:polymer ratios of 1:5 or 1:3, while four also contained TPGS (0.5% w/w). The films were characterized using DSC, TGA, SEM, and PXRD and the mechanical properties were investigated by measuring tensile strength, elongation at break and Young's modulus. The mechanical properties of the films were dependent on the ratio of polymer used. The in vitro dissolution and drug release studies indicated that HPMC-AS films disintegrated more quickly than HPMC films. Silodosin was shown to be dispersed within the polymers. Despite silodosin being submicronized in the HPMC films, the dissolution and drug release rate (time for 80% release) from HPMC films was significantly faster than from HPMC-AS films. TPGS increased the drug release rate to a greater extent with HPMC than with HPMC-AS. The degree of saturation of formulation F4 was >1, which shows potential for improving oral absorption of silodosin.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    UW Gospel Choir Phyllis Byrdwell, director

    No full text
    Concert ProgramUW Gospel Choir Patricia Byrdwell, director June 1, 201
    corecore