5,161 research outputs found

    Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    Get PDF
    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the EPR-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction and the addition particularly in the small squeezing regime, whereas the optimal operation becomes the photon subtraction in the large-squeezing regime.Comment: 6 pages, 6 figures, published versio

    Typical collapse modes of confined masonry buildings under strong earthquake loads

    Get PDF
    Confined masonry structures are a widely applied structural system in many developing countries. During the past Wenchuan Earthquake in 2008, numerous confined masonry buildings collapsed, while many others suffered damage. This study reviews the construction practices of confined masonry buildings in China. Simple models and hand calculation methods are proposed for quantifying the tearing failure of diaphragms, the tensile failure of tie-columns and the sway-mode strength of masonry buildings. The results indicate very good agreement with field observations. The seismic measures that are stipulated in the seismic design codes are very effective for increasing the strength and integrity, but not the ductility of masonry buildings. For those buildings that survived the earthquake, strength rather than ductility protected the confined masonry from collapse or serious damage. Design recommendations are suggested for preventing various types of premature failures and enhancing the lateral strength of masonry buildings. © Su et al.published_or_final_versio

    The Extremely High-Velocity Outflow from the Luminous Young Stellar Object G5.89-0.39

    Full text link
    We have imaged the extremely high-velocity outflowing gas in CO (2-1) and (3-2) associated with the shell-like ultracompact HII region G5.89-0.39 at a resolution of ~3" (corresponding to ~4000 AU) with the Submillimeter Array. The integrated high-velocity (>45 km/s) CO emission reveals at least three blueshifted lobes and two redshifted lobes. These lobes belong to two outflows, one oriented N-S, the other NW-SE. The NW-SE outflow is likely identical to the previously detected Br_gamma outflow. Furthermore, these outflow lobes all clearly show a Hubble-like kinematic structure. For the first time, we estimate the temperature of the outflowing gas as a function of velocity with the large velocity gradient calculations. Our results reveal a clear increasing trend of temperature with gas velocity. The observational features of the extremely high-velocity gas associated with G5.89-0.39 qualitatively favor the jet-driven bow shock model.Comment: 14 pages, 4 figures, accepted for publication in ApJ Letter

    Free Vibration of Layered Circular Cylindrical Shells of Variable Thickness Using Spline Function Approximation

    Get PDF
    Free vibration of layered circular cylindrical shells of variable thickness is studied using spline function approximation by applying a point collocation method. The shell is made up of uniform layers of isotropic or specially orthotropic materials. The equations of motions in longitudinal, circumferential and transverse displacement components, are derived using extension of Love's first approximation theory. The coupled differential equations are solved using Bickley-type splines of suitable order, which are cubic and quintic, by applying the point collocation method. This results in the generalized eigenvalue problem by combining the suitable boundary conditions. The effect of frequency parameters and the corresponding mode shapes of vibration are studied with different thickness variation coefficients, and other parameters. The thickness variations are assumed to be linear, exponential, and sinusoidal along the axial direction. The results are given graphically and comparisons are made with those results obtained using finite element method

    Design optimization of coil gun to improve muzzle velocity

    Get PDF
    Recently, a coil gun was brought to the attention of engineering community as electromagnetic alternative to the chemical launchers. Various studies were performed on coil gun systems focused on achieving the high muzzle velocity in military applications and for satellite launching. Most of these studies focused on improvement of muzzle velocity via increase in the size of the coil gun. Present paper describes the process of design optimization where the size of the coli gun system is restricted. The design of experiment approach utilizes the orthogonal array table that reduces the required number of experiments. The design of experiment is carried out with a commercial PIAnO tool, where the finite element analysis is performed at each experimental point. Then, Kriging model is created to achieve accurate approximation in problems of many design variables or strongly nonlinear model. The coil gun is optimally designed using an evolutionary algorithm (EA) as optimization technique. In order to verify the improvement of muzzle velocity by optimal design, the prototypes of coil gun system are manufactured and the experiments to launch the projectile are performed

    Quantum linear amplifier enhanced by photon subtraction and addition

    Get PDF
    A deterministic quantum amplifier inevitably adds noise to an amplified signal due to the uncertainty principle in quantum physics. We here investigate how a quantum-noise-limited amplifier can be improved by additionally employing the photon subtraction, the photon addition, and a coherent superposition of the two, thereby making a probabilistic, heralded, quantum amplifier. We show that these operations can enhance the performance in amplifying a coherent state in terms of intensity gain, fidelity, and phase uncertainty. In particular, the photon subtraction turns out to be optimal for the fidelity and the phase concentration among these elementary operations, while the photon addition also provides a significant reduction in the phase uncertainty with the largest gain effect.Comment: published version, 7 pages, 9 figure

    An Envelope Disrupted by a Quadrupolar Outflow in the Pre-Planetary Nebula IRAS19475+3119

    Full text link
    IRAS 19475+3119 is a quadrupolar pre-planetary nebula (PPN), with two bipolar lobes, one in the east-west (E-W) direction and one in the southeast-northwest (SE-NW) direction. We have observed it in CO J=2-1 with the Submillimeter Array at ~ 1" resolution. The E-W bipolar lobe is known to trace a bipolar outflow and it is detected at high velocity. The SE-NW bipolar lobe appears at low velocity, and could trace a bipolar outflow moving in the plane of the sky. Two compact clumps are seen at low velocity around the common waist of the two bipolar lobes, spatially coincident with the two emission peaks in the NIR, tracing dense envelope material. They are found to trace the two limb-brightened edges of a slowly expanding torus-like circumstellar envelope produced in the late AGB phase. This torus-like envelope originally could be either a torus or a spherical shell, and it appears as it is now because of the two pairs of cavities along the two bipolar lobes. Thus, the envelope appears to be disrupted by the two bipolar outflows in the PPN phase.Comment: 23 pages, 8 figure

    Quantum metastability in time-periodic potentials

    Full text link
    In this paper we investigate quantum metastability of a particle trapped in between an infinite wall and a square barrier, with either a time-periodically oscillating barrier (Model A) or bottom of the well (Model B). Based on the Floquet theory, we derive in each case an equation which determines the stability of the metastable system. We study the influence on the stability of two Floquet states when their Floquet energies (real part) encounter a direct or an avoided crossing at resonance. The effect of the amplitude of oscillation on the nature of crossing of Floquet energies is also discussed. It is found that by adiabatically changing the frequency and amplitude of the oscillation field, one can manipulate the stability of states in the well. By means of a discrete transform, the two models are shown to have exactly the same Floquet energy spectrum at the same oscillating amplitude and frequency. The equivalence of the models is also demonstrated by means of the principle of gauge invariance.Comment: 15 pages, 7 figure
    corecore