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Quantum linear amplifier enhanced by photon subtraction and addition
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A deterministic quantum amplifier inevitably adds noise to an amplified signal due to the un-
certainty principle in quantum physics. We here investigate how a quantum-noise-limited amplifier
can be improved by additionally employing the photon subtraction, the photon addition, and a
coherent superposition of the two, thereby making a probabilistic, heralded, quantum amplifier. We
show that these operations can enhance the performance in amplifying a coherent state in terms of
intensity gain, fidelity, and phase uncertainty. In particular, the photon subtraction turns out to be
optimal for the fidelity and the phase concentration among these elementary operations, while the
photon addition also provides a significant reduction in the phase uncertainty with the largest gain
effect.

PACS numbers: 42.50.Dv, 03.67.Hk, 42.50.Ex, 42.65.Yj

I. INTRODUCTION

A perfect, deterministic, amplification of a quantum
field is fundamentally impossible since a certain level
of noise is inevitably introduced due to the uncertainty
principle. This may put a practical limitation in quan-
tum measurement and also provide a crucial basis for se-
cure quantum communications. For example, the distin-
guishability of two quantum states cannot be improved
by amplifying the input signals. In another respect, a ma-
licious party intervening in quantum cryptography can-
not obtain perfect clones of an unknown quantum state
under communication [1]. The quantum-noise limit was
identified for both the phase-insensitive and the phase-
sensitive linear amplifiers by Caves [2]. The noise in
the phase-insensitive linear amplifier (PILA) generally
degrades the nonclassicality of a quantum state being
amplified unlike the case of the phase-sensitive one (e.g.,
squeezer). This decoherence effect has been studied for
single-mode [3] and two-mode amplified fields [4, 5]. A
quantum-limited PILA can be experimentally realized by
injecting a signal field to a nondegenerate parametric am-
plifier with the idler field in a vacuum state. It was also
shown recently that the same noise limit can be achieved
by employing a linear-optics scheme with a feed-forward
based on homodyne detection [6].

In contrast to a deterministic scheme, the quantum
noise can be significantly reduced if one adopts a proba-
bilistic amplifying scheme. The so-called “noiseless” am-
plifier, though probabilistic, can have practical applica-
tions for quantum communications particularly when the
probabilistic event of success can be heralded by some
means. Much attention has recently been drawn to the
implementation of such noiseless amplifiers. Ralph and
Lund proposed a scheme based on the quantum scissor
used between splitting a given input into N fields and
recombining them [7], of which working principle was ex-
perimentally demonstrated in [8, 9]. This scheme, how-
ever, requires an arbitrarily large number of interfero-
metric settings to achieve a high-fidelity performance,

only with a very low success probability particularly for
a large-amplitude input state [10]. Zavatta et al. in-
stead used a sequence of photon addition and photon
subtraction, i.e., the operation ââ† on a weak coherent
state |α〉 to realize a specific gain g = 2 [11]. Another
interesting scheme, i.e., adding thermal noise to an in-
put state followed by photon subtraction, was proposed
in [12], which was also experimentally realized in [13].
In the latter two schemes, the elementary photonic op-
erations, subtraction â and addition â†, provide a key
element for a probabilistic amplification. In fact, over
the past years, the photon subtraction â proved to be a
valuable resource for many applications in quantum in-
formatics, e.g., improvement of teleportation fidelity [14],
distillation of entanglement [15, 16], manifestation of con-
tinuous variable nonlocality [17] and generation of the
Schrödinger-cat-like states [18]. The photon addition â†

also provides similar advantages [19] and can transform
any classical state into a nonclassical state [20]. Further-
more, the coherent superposition of those two operations
was also proposed in the first order [21] and the high or-
ders [22] of field operators for quantum-state engineering
and fundamental tests.

In this paper, we investigate how the quantum-limited
PILA can be probabilistically enhanced by employing
these elementary operations—photon subtraction â, ad-
dition â†, and a coherent superposition tâ+ râ† [21]. We
consider the amplification of coherent states and study
the quality of the operations in terms of the gain, the fi-
delity, and the phase uncertainty of the output compared
with the input. Compared to the scheme in [12, 13], the
addition of thermal noise at the initial step is replaced
by the use of quantum-limited PILA in our scheme while
the photon subtraction at the last step can be replaced
by the other photonic operations. The advantage of using
the quantum-limited PILA over the thermal noise seems
rather obvious because the former additionally gives a
displacement effect, i.e., the increase of average ampli-
tude, as well as the addition of noise [29]. As the PILA
and the photonic operations studied here are all within
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current experimental reach, our scheme represents an-
other practical possibility for a noise-reduced quantum
amplifier.
This paper is organized as follows. In Sec. II, we briefly

introduce the quantum-limited PILA and the probabilis-
tic photonic operations. In Sec. III, we investigate and
compare the effects of each probabilistic amplifier on in-
put coherent states in terms of intensity gain, quantum
fidelity, and the Holevo variance of phase. In Sec. IV, we
summarize the main results.

II. QUANTUM-LIMITED PHASE-INSENSITIVE

LINEAR AMPLIFIER AND PROBABILISTIC

PHOTONIC OPERATIONS

A PILA at the quantum-noise limit is characterized by
the input-output relation as

âG =
√
Gâin +

√
G− 1v̂†. (1)

Here âin is an input mode, v̂ is the vacuum mode charac-
terizing the fundamental noise introduced via amplifica-
tion, and âG is the amplified output at the intensity gain
G ≥ 1 [2]. This map can be practically implemented in
a number of different ways. One is to inject a signal âin
to a nondegenerate parametric amplifier with the idler
mode in a vacuum state. Another is to split an input
field âin via a beam splitter (BS) and then displace one
output by the amount proportional to the outcome of ho-
modyne measurement on the other output (feed-forward
scheme with linear optics) [6].
One can obtain the Glauber P function of the amplified

output corresponding to Eq. (1) as

PG(γ) =
1

π(G− 1)

∫

d2βPin(β)e
−|γ−

√
Gβ |2

G−1 , (2)

where Pin(β) is the P function of the input state [5]. If
the input mode is in a coherent state |α〉 with Pin(β) =
δ2(β − α), the output state is given by

ρG =
1

π(G− 1)

∫

d2γ e−
|γ−

√
Gα|2

G−1 |γ〉 〈γ| (3)

in the coherent-state basis |γ〉. In Eq. (3), the P func-

tion of the amplified state, PG(γ) = 1
π(G−1)e

−|γ−
√

Gα|2
G−1 ,

shows that the output distribution is broadened with the
variance of G − 1 (noise) while its center is displaced to√
Gα (amplification).
Now we want to see how the output in Eq. (3) can be

further amplified with reduced noise by applying some
probabilistic operations. The conditional state after per-
forming an operation Ô on ρG is given by

ρop =
1

N
ÔρGÔ

† (4)

where N = Tr
{

ÔρGÔ
†
}

is a normalization constant.

In this paper, we consider the operations Ô = â (photon

subtraction), Ô = â† (photon addition), and Ô = tâ+râ†

(coherent operation). For the case of Ô = â, an initial
state whose P function is Pin(γ) is transformed to ρop ∼
∫

d2γPin(γ)â|γ〉〈γ|â† =
∫

d2γ|γ|2Pin(γ)|γ〉〈γ|, where the
output P function is the input distribution weighted by
the intensity |γ|2 that can make an amplification effect
[12]. A similar argument can be given to the operation

Ô = â† for which the Glauber P function is replaced
by the Husimi Q function to see the amplification effect.
By studying the coherent operation Ô = tâ + râ†, we
can cover the whole range of photonic operations from
subtraction (r = 0) to addition (r = 1). (The condition
t2 + r2 = 1 is used without loss of generality.)
In general, the m-photon subtraction operation, âm,

can be approximately implemented by injecting an in-
put to a beam splitter with high transmittance and
then detecting m photons at the auxiliary output mode
[13, 18, 23]. On the other hand, the m-photon addition
operation, â†m, can be implemented by injecting an input
to a nondegenerate parametric amplifier and detecting m
photons at the output idler mode [11, 23]. The coherent
operation tâ + râ† can be implemented using a Mach-
Zehnder-type single-photon interferometer by erasing the
which-path information on subtraction and addition [21].

III. PROPERTIES OF THE OUTPUT STATES

VIA PROBABILISTIC AMPLIFIERS

In this section, we characterize the output state ob-
tained by performing the operations âm, â†m, and tâ +
râ†, respectively, on the state in Eq. (3) amplified via
a quantum-limited PILA. In particular, we investigate
the intensity gain, the fidelity, and the phase uncertainty
of the output state by each operation with respect to a
target amplified state.
The operations â and â† commute with the phase-shift

operation eiθâ
†â. That is, for Ô = â and â†,

Ôeiθâ
†âρe−iθâ†âÔ† = eiθâ

†âÔρÔ†e−iθâ†â. (5)

It means that â and â†, respectively, yield the same effect
on an input coherent state

∣

∣|α|eiφ
〉

regardless of the phase

φ. This is not true with the coherent operation tâ+ râ†,
for which we therefore take into consideration the average
over the whole range of input-state phase φ ∈ [0, 2π] to
evaluate performance in the following. We take t and r
to be real (t2 + r2 = 1) without loss of generality.

A. Effective gain

When the input field is in a coherent state |α〉, the
effective gain Ge can be defined as

√

Ge ≡
∣

∣

∣

∣

Tr{âρop}
α

∣

∣

∣

∣

, (6)

where Tr{âρop} is the mean amplitude of the output state
in Eq. (4).
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FIG. 1: (Color online) Effective gain Ge versus the gain
G of the quantum-limited PILA followed by one-photon
subtraction â (green dashed), two-photon subtraction
â2(green dot-dashed), one-photon addition â† (blue
long-dashed), and two-photon addition â†2 (blue

dotted), respectively, for the input coherent state with
|α| = 0.2.

In Fig. 1, we show the effective gain Ge achieved by
first applying the quantum-limited PILA at gain G and
then further applying photon subtractions or photon ad-
ditions. In general, Ge turns out to be larger than G,
which implies that both probabilistic operations success-
fully enhance the amplifying gain. As the number m of
operations âm and â†m increases, the effective gain be-
comes larger. In particular, the m-photon addition gives
a higher effective gain than m-photon subtraction. Now,
to see how the effect of coherent operation tâ + râ† fits
into those of extremal operations â and â†, we plot the
effective gain, averaged over all phases φ ∈ [0, 2π] of in-
put coherent states

∣

∣|α|eiφ
〉

, as a function of r in Fig. 2.
We see that the coherent operation also enhances the ef-
fective gain overall for all values of ratio r, however, the
effective gain does not increase monotonically with r in
general. The best operation turns out to be the photon
addition (r = 1) in view of the effective gain.

B. Output fidelity

In the above, we have seen that all the considered pho-
tonic operations enhance the effective gain over the de-
terministic amplifier and that the photon addition among
them gives the largest gain. However, the intensity gain
is not necessarily a good figure of merit for assessment of
an amplifier. Thus we now consider the quantum fidelity
between each output state and a target coherent state
with amplitude

√
Geα, where α is an input amplitude.

That is, we investigate the quantity

F ≡
√

〈

√

Geα
∣

∣

∣
ρop

∣

∣

∣

√

Geα
〉

(7)

for each operation and the results are shown in Fig. 3.
We see that the output fidelity generally decreases with

the amplifying gain for both operations. Furthermore,
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FIG. 2: (Color online) Effective gain Gavg averaged over
the phase φ ∈ [0, 2π] of input coherent states

∣

∣|α|eiφ
〉

(|α| = 0.2) as a function of ratio r in the coherent
operation tâ+ râ† following the quantum-limited PILA

at gain G = 1.2. The green dashed line (blue
long-dashed line) shows the effective gain by one-photon

subtraction â (one-photon addition â†).
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FIG. 3: (Color online) (a) Output fidelity F versus the
gain G of the quantum-limited PILA followed by

one-photon subtraction â (green dashed), two-photon
subtraction â2(green dot-dashed), one-photon addition
â† (blue long-dashed), and two-photon addition â†2

(blue dotted), respectively, for the input coherent state
with |α| = 0.2. (b) Output fidelity F versus the

effective gain Ge for the subtraction schemes â (green
dashed) and â2 (green dot-dashed), and the PILA alone

(red solid).
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the fidelity appears to decrease with the number m of
operations âm and â†m, for a given G, unlike the case of
intensity gain in Fig. 1. However, if the fidelity is shown
as a function of the effective gain Ge in Fig. 3(b), we
see that the output state has a better quality with more
operations m for âm. For comparison, the fidelity for
the case of using the PILA alone is also plotted, which
is generally lower than that of the subtraction scheme.
Within the same number of photon operations, photon
subtraction operation gives a higher target fidelity than
the photon addition scheme. This is because the photon
addition operation always maps an initial classical state
to a nonclassical state [20], thereby significantly degrad-
ing the similarity between the target coherent state and
the output state.

In Fig. 4, we compare the scissor scheme [7, 8] and
the photon subtraction scheme in terms of the output
fidelity and the success probability. The target effective
gain is set to be Ge = 2 for each scheme. For a small co-
herent input (α = 0.2), the scissor scheme has a slightly
higher fidelity than the subtraction scheme using even a
single scissor (N=1) with a considerable success prob-
ability. On the other hand, for a large coherent input
(α = 1), the required number N of scissors, in order
to beat the output fidelity obtained by the subtraction
scheme, is N ≥ 3, for which the success probability be-
comes lower than that of the subtraction scheme. For the
case of subtraction scheme, which is implemented via a
highly transparent beam splitter together with an on-off
detector, the success probability can be changed by ad-
justing the transmittance of the beam splitter, which of
course affects the output fidelity. For the plots of Fig.
4, we use the transmittance 0.99, which gives a modest
level of success probability with a high output fidelity.

To better understand how each probabilistic operation
modifies the phase-space profile of the coherent state, we
plot the Wigner functions of the output states in Fig. 5.
In general, the photonic operations push the Wigner dis-
tribution of the input field further away from the origin,
hence enhancing amplification and phase concentration
(see also Sec. III-C.) We see that the photon subtraction
operation does not significantly distort the initial Gaus-
sian profile keeping the Wigner function positive definite
at all points. On the other hand, the photon addition
creates a negative region in the phase space with a more
complex structure than the case of photon subtraction.

In Fig. 6, we also plot the Wigner distribution of
the output state by a coherent superposition operation
tâ+râ† following the quantum-limited PILA. In this case,
the output profile depends on the phase φ of the input
coherent state

∣

∣|α|eiφ
〉

as the operation tâ+ râ† does not
commute with the phase-shift operation. The coherent
operation generally creates a negative region with a sub-
stantial non-Gaussianity of phase-space profile which can
reduce the quantum fidelity between the output state and
the target coherent state. To assess more precisely how
the output fidelity changes as the ratio r of the coher-
ent operation tâ+ râ† is changed , we plot the quantum
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FIG. 4: (Color online) Output fidelity F (scissor
scheme, black dotted; subtraction scheme, green

dashed) and the success probability Ps (scissor scheme,
black dashed; subtraction scheme, green solid) to

achieve the effective gain Ge = 2. Left (right) panel:
input amplitude α = 0.2 (1). Bottom figures represent
the magnified view of the success probability Ps shown
above. N is the number of the used scissors by splitting
a given input into N fields and recombining them [7].
For the case of subtraction scheme, which may be
implemented via a highly transparent beam splitter

together with an on-off detector for heralding of success,
the plots are made with the choice of the transmittance

0.99.

fidelity averaged over the phase φ ∈ [0, 2π] of input coher-
ent states

∣

∣|α|eiφ
〉

as a function of r in Fig. 7. It is seen
that the quantum fidelity shows a monotonic behavior
with the ratio r and that the photon subtraction (r = 0)
gives the best output fidelity among all operations.

For the case of a very small coherent state, a rather
high fidelity can be obtained even with a vacuum state.
Thus, the quantum fidelity might not always be a right
measure to look into. In the next section, we investigate
the phase uncertainty of an output state to assess the
quality of our schemes in another respect.

C. Optical phase variance: Holevo variance

In quantum communication using coherent states, the
phase of the input state can play a role as an information
content to deliver from one party to another. In such
a case, the phase uncertainty of the output state after
amplification becomes a subject of interest. Here we use
the Holevo variance [24] to assess the quality of phase
information, i.e.,

V =
1

|µ|2
− 1, (8)
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FIG. 5: (Color online) Wigner distribution of the
output state by (a) one-photon subtraction â and (b)
one-photon addition â† following the quantum-limited
PILA at gain G = 1.2 for the input coherent state with
α = 0.2. The red (blue) region designates the positive
(negative) values of the Wigner function. The Wigner
function takes all positive values in (a) whereas it shows

a negative region around the origin in (b).

where µ =
∫ 2π

0 dθ P (θ)eiθ is the sharpness [25] corre-
sponding to the probability distribution P (θ) of experi-
mentally measured phase θ. Using the “canonical phase”
[26, 27] the sharpness becomes µC =

∑∞
n=0 〈n+ 1| ρ |n〉,

where |n〉 is the number state.

In Fig. 8, we plot the Holevo variance of the output
state by photon subtractions and additions, respectively,
following the quantum-limited PILA. Compared with the
variance of the output state by the PILA alone (red solid
line), the phase uncertainty is significantly reduced by
each probabilistic operation, which is more pronounced
with the numberm of the operations âm and â†m. In par-
ticular, for the case of photon addition, the reduction of
phase uncertainty is remarkable even without the PILA
(case of G = 1). This suggests that the photon addition
alone can be useful to concentrate the phase information
to some extent. To fully assess the performance of the
photonic operations, we show in Fig. 9 the Holevo vari-
ance averaged over the phase φ ∈ [0, 2π] of input coherent
states

∣

∣|α|eiφ
〉

as a function of r by the coherent opera-
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FIG. 6: (Color online) Wigner distribution of the
output state by the coherent operation tâ+ râ†

(r = 1√
2
) following the quantum-limited PILA at gain

G = 1.2. The input coherent state
∣

∣|α|eiφ
〉

with
|α| = 0.2 has the phase (a) φ = 0, (b) φ = π

4 , and (c)
φ = π

2 , respectively. The red (blue) region designates
the positive (negative) values of the Wigner function. In
all plots, the Wigner function takes negative values in

the central region around the origin.

tion tâ+râ† following the quantum-limited PILA. We see
that the coherent operation overall shows enhancement
of phase concentration except for a certain narrow range
of r. In general, the photon addition gives the best phase
concentration at a low gain G of the PILA, while the pho-
ton subtraction gives the optimal performance among the
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FIG. 7: (Color online) Output fidelity Favg averaged
over the phase φ ∈ [0, 2π] of input coherent states

∣

∣|α|eiφ
〉

as a function of r by the coherent operation

tâ+ râ† following the quantum-limited PILA at gain
G = 1.2 (|α| = 0.2). Green dashed line (blue
long-dashed line) shows the output fidelity by

one-photon subtraction â (one-photon addition â†).
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FIG. 8: (Color online) Holevo variance V versus the
gain G of the quantum-limited PILA followed by

one-photon subtraction â (green dashed), two-photon
subtraction â2 (green dot-dashed), one-photon addition
â† (blue long-dashed), and two-photon addition â†2

(blue dotted), respectively, for the input coherent state
with |α| = 0.2. Red (solid) line shows the variance from

the quantum-limited PILA alone.

considered operations in a wide range of larger G.

IV. CONCLUSION

In this paper, we have studied how a deterministic
quantum amplifier can be enhanced by additionally ap-
plying some probabilistic operations. In particular, we
have investigated the effects on an input coherent state
of the quantum-limited PILA followed by the currently
available photonic operations, i.e., photon subtraction,
photon addition, and a coherent superposition of the
two. It has been shown that these operations can en-
hance the performance of the deterministic amplifier in

0.2 0.4 0.6 0.8 1.0
r
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10

15

20

25

Vavg

FIG. 9: (Color online) Holevo variance Vavg averaged
over the phase φ ∈ [0, 2π] of input coherent states

∣

∣|α|eiφ
〉

as a function of r by the coherent operation

tâ+ râ† following the quantum-limited PILA at gain
G = 1.2 (|α| = 0.2). The green dashed line shows the
case of one-photon subtraction â, the blue long-dashed
line the one-photon addition â†, the black dotted line
the input coherent state, and the red straight line the

PILA alone.

view of intensity gain, fidelity, and phase uncertainty. In
particular, the photon subtraction turns out to be op-
timal among those operations in terms of fidelity and
phase variance, while the photon addition also gives a
significant phase concentration with the largest gain. As
further applications, it will be interesting to study a non-
deterministic, heralded, quantum cloner and an error cor-
rection scheme for continuous variables [28] along a sim-
ilar line to the present investigation.
Note added. After the completion of this work, we

became aware of a related work [29] where the photon
subtraction following the quantum-noise-limited ampli-
fier was considered.
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