
ar
X

iv
:1

10
7.

27
71

v1
  [

qu
an

t-
ph

] 
 1

4 
Ju

l 2
01

1

Enhancing quantum entanglement for continuous variables by a coherent

superposition of photon subtraction and addition

Su-Yong Lee,1 Se-Wan Ji,2 Ho-Joon Kim,1 and Hyunchul Nha1, 3

1Department of Physics, Texas A&M University at Qatar, POBox 23874, Doha, Qatar
2School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012, South Korea

3Institute für Quantenphysik, Universität Ulm, D-89069 Ulm, Germany

We investigate how the entanglement properties of a two-mode state can be improved by per-
forming a coherent superposition operation tâ+ râ† of photon subtraction and addition, proposed
by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of
entanglement, the EPR-type correlation, and the performance of quantum teleportation can be all
enhanced for the output state when the coherent operation is applied to a two-mode squeezed state.
The effects of the coherent operation are more prominent than those of the mere photon subtraction
â and the addition â† particularly in the small squeezing regime, whereas the optimal operation
becomes the photon subtraction (case of r = 0) in the large-squeezing regime.

PACS numbers: 03.67.-a, 42.50.Dv

I. INTRODUCTION

Continuous variable (CV) entangled resources are es-
sential for many applications in quantum information
processing, such as long distance quantum communica-
tions [1], CV quantum teleportation [2, 3], and the Bell
test [4–7]. As the practically available resources usu-
ally have finite degree of entanglement, it is of crucial
importance to come up with feasible, mostly probabilis-
tic, schemes to improve the given entanglement proper-
ties. In the regime of CVs, a Gaussian two-mode en-
tangled state is most frequently employed as an entan-
gled resource both theoretically and experimentally. It
is known that the Gaussian entangled states cannot be
distilled only by Gaussian local operations and classical
communications [8–10], but they can be made so by non-
Gaussian operations. A simple non-Gaussian operation
is the photon subtraction, represented by â|Ψ〉 where â
is the bosonic annihilation operator, which can enhance
the performance of the Gaussian two-mode entangled
state in quantum teleportation [11–13] and the dense-
coding [14]. Entanglement improvement was experimen-
tally realized by a nonlocal photon subtraction [15] and
by the local photon subtractions [16], respectively. Fur-
thermore, it was suggested that entanglement distilla-
tion can be achieved also by photon addition, repre-
sented by â†|Ψ〉 where â† is the bosonic creation operator
[17], or by some combinations of addition and subtrac-
tion, such as photon-addition-then-subtraction ââ†|Ψ〉
and subtraction-then-addition â†â|Ψ〉 [17], or by coher-
ent combinations of two sequences of photon subtraction
and addition [18]. In particular, the latter scheme was
motivated by the recent proposal of M. S. Kim et al.

to prove the bosonic commutation relation [19], where
the coherent superpositions of two product operations,
ââ† and â†â, was suggested, which was experimentally
demonstrated in [20].

Recently, we proposed a coherent superposition of pho-
ton subtraction and addition at a more elementary level

than Ref. [19], that is, tâ+ râ† for quantum state engi-
neering [21]. The coherent operation can be realized in a
single photon interference setting [19, 21], where the key
idea is to erase the which-path information on whether
the single photon triggering the detector is due to the ex-
perimental configuration implementing the subtraction
or the addition. The coherent operation may create a
nonclassical state with observable effects (squeezing and
sub-Poissonian statistics) out of a classical state and can
also be used to generate an arbitrary superposition states
in the number-state basis, e.g. C0|0〉+C1|1〉+C2|2〉 [21].

In this paper, we apply the coherent superposition op-
eration tâ + râ† to two-mode states and study how the
entanglement properties can be enhanced by the coher-
ent operation on each local mode. This naturally includes
the photon subtraction (r = 0) and the photon addition
(t = 0) as extremal cases. Specifically, we investigate how
(i) the degree of entanglement quantified by von Neuman
entropy for pure states, (ii) the Einstein-Podolsky-Rosen
(EPR) correlation, and (iii) the performance (average fi-
delity) for quantum teleportation can be improved by
acting the coherent operation on a two-mode squeezed
state. We show that all these entanglement characteris-
tics can be remarkably enhanced by the coherent opera-
tion particularly in the small-squeezing regime, whereas
the optimal operation becomes the photon subtraction
(case of r = 0) in the large-squeezing regime.

This paper is organized as follows. In Sec. II, we study
how the coherent superposition operation transforms a
two-mode squeezed state to a non-Gaussian state with
the enhancement of entanglement measured by von Neu-
mann entropy and that of EPR correlation measured by
the sum of two nonlocal quadrature variances. In Sec.
III, we employ the output non-Gaussian entangled state
via the coherent operation for CV teleportation, where
the average fidelity is compared with those obtained by
other non-Gaussian operations on two-mode states. The
main results are summarized in Sec. IV.
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II. NON-GAUSSIAN TWO-MODE ENTANGLED

STATES BY A COHERENT SUPERPOSITION OF

PHOTON SUBTRACTION AND ADDITION

In this section, we study how the local coherent opera-
tion tâ+râ† on two-mode states can change the entangle-
ment properties, specifically the degree of entanglement
and the EPR correlation, of the input states. In par-
ticular, we take a two-mode squeezed state as an input
state, which is a typical Gaussian state produced in ex-
periment. It is also known that every Gaussian pure state
can be transformed to a two-mode squeezed state by local

unitary Gaussian operations [22]. It has been previously
found that the entanglement can be distilled by some
non-Gaussian operations such as photon subtraction (ad-
dition) and addition-then-subtraction (subtraction-then-
addition) operations. We show that the entanglement
can be even more enhanced by a coherent superposition
operation particularly in the low-squeezing regime.

By performing the coherent operation on
the two-mode squeezed state, |TMSS〉AB =√
1− λ2

∑∞
n=0 λ

n|n〉A|n〉B (λ = tanh s), one obtains the
output state as

√
N(tAâ+ rAâ

†)(tB b̂+ rB b̂
†)|TMSS〉AB,

=
√
N [

∞
∑

n=0

λn(λtAtB(n+ 1)|n〉A|n〉B + λtArB
√

(n+ 1)(n+ 2)|n〉A|n+ 2〉B + λrAtB
√

(n+ 1)(n+ 2)|n+ 2〉A|n〉B

+rArB(n+ 1)|n+ 1〉A|n+ 1〉B) ] , (1)

where

N =
(1 − λ2)3

λ2(1 + |tAr∗B + rAt∗B|2) + |tAtBλ2 + rArB |2
(2)

is the normalization constant with |ti|2 + |ri|2 = 1
(i = A,B). We examine the entanglement and the
EPR correlation of the output state compared with those
states by other non-Gaussian operations: photon sub-
traction operation âi on one (both) mode(s) of the TMSS,

photon-addition-then-subtraction operation âiâ
†
i on both

modes of the TMSS. For the case of photon addition

â†b̂†|TMSS〉, the degree of entanglement is the same as

that of the photon-subtracted state âb̂|TMSS〉 , but it
does not improve the EPR correlation [17]. Thus, we do

not here consider the states â†b̂†|TMSS〉. Those non-
Gaussian operations on the TMSS generate the output
states as

â|TMSS〉AB =̇ b̂†|TMSS〉AB

=̇
√
m1

∞
∑

n=0

λn
√
n+ 1|n〉A|n+ 1〉B,

b̂|TMSS〉AB =̇ â†|TMSS〉AB

=̇
√
m1

∞
∑

n=0

λn
√
n+ 1|n+ 1〉A|n〉B ,

âb̂|TMSS〉AB =̇ ââ†|TMSS〉AB

=̇
√
m2

∞
∑

n=0

λn(n+ 1)|n〉A|n〉B,

ââ†b̂b̂†|TMSS〉AB

=̇
√
m3

∞
∑

n=0

λn(n+ 1)2|n〉A|n〉B, (3)

where =̇ represents states equal up to the normalization

constants m1 = (1 − λ2)2, m2 = (1−λ2)3

1+λ2 , and m3 =
(1−λ2)5

1+11λ2+11λ4+λ6 .

A. Degree of Entanglement

We here investigate how the degree of entanglement
is changed by the local coherent operations tâ + râ† on
a two-mode state. For a pure state in Schmidt form,
|ψ〉AB =

∑

i=1 ci|αi〉A|βi〉B (ci: real positive) with the
orthonormal states |αi〉A and |βi〉B, the quantum entan-
glement is quantified by the entropy of the reduced den-
sity operator [23],

E(|ψ〉AB) = −TrρA log2 ρA = −
∑

i

c2i log2 c
2
i , (4)

where the local state is given by ρA = TrB|ψ〉AB〈ψ|.
The amount of entanglement for a two-mode squeezed
state is analytically given by E = cosh2 s log2(cosh

2 s)−
sinh2 s log2(sinh

2 s) [24, 25], and those for other states
can be evaluated numerically by their Schmidt coeffi-
cients.
In Fig. 1, we plot the degree of entanglement for

the four states |TMSS〉, â|TMSS〉, âb̂|TMSS〉, and

ââ†b̂b̂†|TMSS〉. It is seen that the entanglement is best
improved by the photon-addition-then-subtraction oper-

ation ââ†b̂b̂† among those. However, the entanglement
is even more improved by the coherent superposition op-
eration tâ + râ† particularly in the weak squeezing re-
gion with the local parameters the same rA = rB = r,
as shown in Fig. 1 (a) and (b). This may be under-
stood by looking into their Schmidt coefficients. Assum-
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FIG. 1: (Color online) Entanglement (a) as a function of the
squeezing parameter s, and (b) as a function of r with s = 0.1
for the states: |TMSS〉 (orange thick solid) , â|TMSS〉

(red dot-dashed), âb̂|TMSS〉 (green dotted), ââ†b̂b̂†|TMSS〉
(black dashed), (tâ+râ†)|TMSS〉 (the coherent operation on

one local mode only, purple long-dashed), and (tâ+ râ†)(tb̂+

rb̂†)|TMSS〉 (the coherent operation on both modes, blue
solid). In (a), the value r in the coherent operation is opti-
mized for each s.

ing λ = tanh s ≪ 1, the (unnormalized) states are given
by

âb̂â†b̂†|TMSS〉 ≈ |0〉A|0〉B + 4λ|1〉A|1〉B,

(tâ+ râ†)|TMSS〉
≈ r|1〉A|0〉B + λ(t|0〉A +

√
2r|2〉A)|1〉B,

(tâ+ râ†)(tb̂ + rb̂†)|TMSS〉
≈ r2|1〉A|1〉B + λ(t|0〉A +

√
2r|2〉A)(t|0〉B +

√
2r|2〉B).

(5)

We then obtain the corresponding Schmidt coefficients as
shown in the table below.

state Schmidt coefficient

âb̂â
†
b̂
†|TMSS〉

1√
1+16λ2

, 4λ√
1+16λ2

(tâ + râ
†)|TMSS〉

r√
r2+λ2(1+r2)

, λ
√
1+r2√

r2+λ2(1+r2)

(tâ + râ
†)(tb̂ + rb̂

†)|TMSS〉
r2√

r4+λ2(1+r2)2
, λ(1+r2)√

r4+λ2(1+r2)2

In the limit of λ ≪ 1, one Schmidt coefficient of the

state âb̂â†b̂†|TMSS〉 is always much larger than the other
coefficient. On the other hand, it is possible to equalize
the Schmidt coefficients for the case of the coherent su-
perposition operation, which explains the larger improve-

ment of the output entanglement than the case of âb̂â†b̂†.
In Fig. 1(b), the entanglement achieves around 1 for
s = 0.1 via the coherent superposition operation on one
mode or both modes of the TMSS, whereas it achieves
around 0.6 via the photon-addition-then-subtraction op-
eration. At r = 0 (r = 1), the state refers to the photon-
subtracted state (the photon-added state).

B. EPR correlation

We here investigate another entanglement property,
the EPR correlation, which is the total variance of a pair
of EPR-like operators, ∆2(x̂A−x̂B)+∆2(p̂A+p̂B), where

x̂j =
1√
2
(âj + â†j) and p̂j =

1
i
√
2
(âj − â†j) (j = A,B). For

separable two-mode states, the total variance is larger
than or equal to 2, so the condition ∆2(x̂A − x̂B) +
∆2(p̂A + p̂B) < 2 clearly indicates quantum entangle-
ment [26], which can be a crucial resource for quantum
protocols using CVs.

On applying the coherent operation, (tAâ+rAâ
†)(tB b̂+

rB b̂
†)|TMSS〉, we obtain the EPR correlation

∆2(x̂A − x̂B) + ∆2(p̂A + p̂B)

= 2 +
4

M
[M(cosh s− sinh s)(cosh s− 2 sinh s)

−(AB + |B|2)(cosh s− sinh s)2], (6)

where

A = tAtB sinh2 s+ rArB cosh2 s,

B = (tAtB + rArB) cosh s sinh s,

C =
√
2tArB cosh s sinh s,

D =
√
2rAtB cosh s sinh s, (7)

andM = A2+B2+C2+D2. In Fig. 2, we plot the EPR
correlation for the output state and see that there exists
a threshold curve as a function of s and r (rA = rB = r).
At r = 0 (r = 1), the case refers to the photon-subtracted

(photon-added) state, âb̂|TMSS〉 (â†b̂†|TMSS〉). To ex-
hibit the EPR correlation, the squeezing parameter must
be larger than s = 0 (0.3782) at r = 0 (1). The EPR cor-
relation is stronger in the photon-subtracted state than
in the photon-added state for the same squeezing param-
eter. However, for a given s, the optimal EPR corre-
lation occurs with the coherent superposition operation,
r 6= 0, 1, in the weak squeezing region, and the optimized
r approaches to r = 0 (photon subtraction) with the
squeezing parameter s.
In Fig. 3 (a), we show the EPR correlation from the

coherent superposition operation optimized over the ratio
r in tâ+râ† for a given squeezing parameter s, compared
with those from the other non-Gaussian operations. We
see that the coherent operation on both local modes im-
proves the EPR correlation better than the other op-
erations in the weak squeezing region; For the class of

photon-number entangled states
∑N

n=0 dn|n〉A|n〉B with
the truncation number N , the EPR correlation is given
by

∆2(x̂A − x̂B) + ∆2(p̂A + p̂B)

= 2− 4

∑N
n=1 n(dn−1 − dn)dn

∑N
n=0 d

2
n

, (8)

where dn is taken as real. For a given truncation N ,
the EPR correlation optimized over the coefficients {dn}
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FIG. 2: (Color online) EPR correlation ∆2(x̂A − x̂B) +
∆2(p̂A + p̂B) as a function of s and r for the state (tâ +

râ†)(tb̂ + rb̂†)|TMSS〉. Colored region represents the condi-
tion ∆2(x̂A − x̂B) + ∆2(p̂A + p̂B) < 2.
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FIG. 3: (Color online) (a) EPR correlation as a function
of s for the states:|TMSS〉 (orange thick solid), â|TMSS〉

(red dot-dashed), âb̂|TMSS〉 (green dotted), ââ†b̂b̂†|TMSS〉

(black dashed), and (tâ+ râ†)(tb̂+ rb̂†)|TMSS〉 (blue solid),
(b) EPR correlation as a function of r for the state, (tâ +

râ†)(tb̂+ rb̂†)|TMSS〉 at s = 0.01 (blue dotted) and s = 0.06
(blue dashed). In (a), the value r in the coherent operation
is optimized for each s.

becomes stronger with N , as shown in Fig. 4. To the
first order of λ, the effective N becomes larger by the
coherent operation than by the other non-Gaussian op-
erations. From Eq. (5), Neff reads 1 and 2 for the states

âb̂â†b̂†|TMSS〉 and (tâ+ râ†)(tb̂+ rb̂†)|TMSS〉, respec-
tively. Although the state (tâ + râ†)(tb̂ + rb̂†)|TMSS〉
have other component states |20〉 and |02〉 in Eq. (5),
we have checked that the optimized EPR correlation in-
cluding these states is the same as that of Eq. (9) with
N = 2 . For the states d0|00〉AB + d1|11〉AB + d2|22〉AB,
the optimized condition reads d0 ≈ 4.51, d1 ≈ 2.63,
and d2 ≈ 1.15. The coherent operation does not ex-
actly achieve the optimal EPR correlation, but one can
adjust the parameter r in the coherent operation tâ+râ†

to outperform the other non-Gaussian operations.
In general, the EPR correlation of the TMSS is en-

hanced with the squeezing parameter s, but it may not
be always true for the case of the coherent operation in
the weak squeezing region, as shown in Fig. 3 (a). We
particularly compare the cases of s = 0.01 and s = 0.06
in Fig. 3 (b). For the state of the form

∑2
n=0 dn|n〉A|n〉B,
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FIG. 4: (Color online) EPR correlation as a function of the

truncation number N for the states
∑

N

n=0
dn|n〉A|n〉B (blue

circle) and
∑

N

n=0
en|n〉A|n+1〉B (red square) optimized over

{dn} and {en}, respectively.

the best EPR correlation is obtained with the condition
d0 ≈ 4.51, d1 ≈ 2.63, and d2 ≈ 1.15 where the coeffi-
cients decrease with the photon number. For the case of

coherent operation tâi+râ
†
i on the TMSS, the coefficients

in the number state basis (with the parameter r adjusted
for a best result) are more deviated from the optimal
condition with increasing s. For a moderate squeezing

0.055 < s < 0.324, the operation ââ†b̂b̂† gives the best
EPR correlation, whereas for a rather large squeezing
s > 0.324 the photon subtraction (r = 0) becomes the
optimal operation.
Among the considered non-Gaussian operations, the

photon subtraction on one mode only does not distill the
EPR correlation as shown in Fig. 3 (a), which can also
be explained in a similar way. In Fig. 4, the optimal

EPR correlation for the class of states
∑N

n=0 en|n〉A|n+
1〉B (like the state â|TMSS〉AB) cannot be better than

that for the states
∑N

n=0 dn|n〉A|n〉B for a given N . Note

that the non-Gaussian operations â†b̂† and â†âb̂†b̂ do not
enhance the EPR correlation of the TMSS, either [17].

III. QUANTUM TELEPORTATION USING

NON-GAUSSIAN ENTANGLED STATES

In this section, we investigate how the non-Gaussian
entangled state via the coherent operation can improve
the average fidelity for CV quantum teleportation. Af-
ter L. Vaidman introduced the quantum teleportation
for the state of a one-dimensional particle in phase space
[2], it has been further extended to an experimentally
relevant protocol using the finite degrees of correlation
(squeezing) by Braunstein and Kimble (BK) [3]. The
quality of the teleportation is usually assessed by the
average fidelity between an unknown input state and
its teleported output state. The best possible fidelity
in teleporting a coherent state without entangled re-
sources is 1/2 [27], so the fidelity over the classical
bound 1/2 may be considered as a success for CV quan-
tum teleportation. Based on the BK protocol, the per-
fect teleportation can occur with an infinitely entan-
gled resource that exhibits an ideal EPR correlation, i.e.,
∆(x̂A − x̂B) → 0, ∆(p̂A + p̂B) → 0. The CV teleporta-
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tion is practically implemented with the quadrature am-
plitudes x̂ = 1√

2
(â+â†) and p̂ = 1

i
√
2
(â−â†) of the optical

field playing the roles of position and momentum [3].
Some non-Gaussian entangled states were previously

employed as a quantum resource for CV teleportation

[17, 28]. We here consider the state (tAâ + rAâ
†)(tB b̂ +

rB b̂
†)|TMSS〉 via the coherent operation for the telepor-

tation of coherent states. The characteristic function of
the state (tAâ+ rAâ

†)(tB b̂+ rB b̂
†)|TMSS〉 is given by

CE(λ2, λ3) =
e−(|α|2+|β|2)/2

M
[A2(1− |α|2)(1− |β|2) +B2 + C2(1− 2|β|2 + |β|4

2
) +D2(1− 2|α|2 + |α|4

2
)

+ AB(αβ + α∗β∗) +
A√
2
(αβ∗ + α∗β){C(|β|2 − 2) +D(|α|2 − 2)}+ BC√

2
(β2 + β∗2)

+
BD√
2
(α2 + α∗2) +

CD

2
(α2β∗2 + α∗2β2)], (9)
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FIG. 5: (Color online) Average fidelity of teleporting a coher-

ent state as a function of s and r for the state (tâ+ râ†)(tb̂+

rb̂†)|TMSS〉. The colored region achieves the fidelity above
the classical limit 1/2.

where α = λ2 cosh s − λ∗3 sinh s, and β = λ3 cosh s −
λ∗2 sinh s. In general, with the characteristic function
CE(λ2, λ3) for the entangled resource, the characteris-
tic function Cout(λ) of the teleported state is given by
Cout(λ) = Cin(λ)CE(λ

∗, λ) [29], and the fidelity is given
by

F =
1

π

∫

d2λCout(λ)Cin(−λ) (10)

for a pure input state with Cin(λ). For the coherent-state
inputs |γ〉, the fidelity does not depend on the initial am-
plitude γ, since the output amplitude always matches the
input amplitude in the BK protocol. Thus, we have only
to calculate the fidelity for one particular coherent state,
e.g. vacuum state, to obtain the average fidelity for the
whole set of coherent state inputs. In Fig. 5, we show
the fidelity of teleporting a coherent state using the re-
source via the coherent operation in a symmetric setting,
rA = rB = r. The maximum fidelity is achieved by the
coherent superposition operation (r 6= 0, 1) in the weak
squeezing region, and the value of r for the optimal fi-

delity approaches r = 0 (photon subtraction) with the
squeezing s, similar to the case of the EPR correlation.
The average fidelity generally increases with the squeez-
ing parameter s. To overcome the classical limit 1/2, s
must be larger than s = 0 (0.3047) at r = 0 (1). Inter-
estingly, by comparing Figs. 2 and 5, we find that there
exists a parameter region, e.g. s = 0.2 and r = 0.5, where
no EPR correlation exists, nevertheless, the fidelity above
the classical bound 1/2 is achieved. This suggests that
the EPR correlation is not a necessary condition for a
success of quantum teleportation beyond the Gaussian
regime.

In Fig. 6 (a), we display the average fidelity in teleport-
ing coherent states using various non-Gaussian resources.

For the state (tâ+râ†)(tb̂+rb̂†)|TMSS〉 via the coherent
operation, we show the fidelity optimized over r for each
squeezing parameter s. Compared with the other non-
Gaussian states, the average fidelity is further improved
by the coherent operation in the weak squeezing region.
For instance, we see from Fig. 6 (b) that the average
fidelity 0.65 is achieved well above the classical bound
1/2 by the coherent operation, for s = 0.01, whereas
it is a little over 0.5 by the other non-Gaussian opera-
tions. The non-Gaussian operation on one local mode
only, (tâ+ râ†)|TMSS〉, which includes both the photon
subtraction and the photon addition, does not improve
the fidelity for any values of r. For a moderate squeez-

ing 0.075 < s < 0.417, the operation ââ†b̂b̂† gives the
best fidelity for a given squeezing s, whereas for a rather
large squeezing s > 0.417 the photon subtraction (r = 0)
becomes the optimal operation.

IV. CONCLUSION

In this paper, we have shown that the coherent su-
perposition operation of photon subtraction and addi-
tion can enhance various entanglement characteristics of
a two-mode state including the degree of entanglement,
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FIG. 6: (Color online) Average fidelity of teleporting a co-
herent state (a) as a function of s and (b) as a function
of r with s = 0.01 for the states: |TMSS〉 (orange thick

solid), â|TMSS〉 (red dot-dashed), âb̂|TMSS〉 (green dot-

ted), ââ†b̂b̂†|TMSS〉 (black dashed), and (tâ + râ†)(tb̂ +

rb̂†)|TMSS〉 (blue-solid curve). In (a), the value r in the
coherent operation is optimized for each s.

the EPR correlation, and the average fidelity of quan-
tum teleportation. We have demonstrated that the co-
herent operation outperforms the previously studied non-
Gaussian operations such as photon subtraction opera-
tion and photon-addition-then-subtraction operation in
the weak squeezing regime, which may thus carry a prac-
tical significance. In particular, it can be useful for the
information processing using pulsed optical fields that
typically show small squeezing. For instance, a recent

experiment in Ref. [30] demonstrated 1 dB squeezing in
the pulsed regime corresponding to the squeezing param-
eter s ∼ 0.115. On the other hand, the optimal opera-
tion becomes the photon subtraction (case of r = 0) in
the large-squeezing regime. The weak squeezing regime
where the coherent operation gives a better result than
the mere photon subtraction and the addition has been
identified as (i) s < 0.44 for the degree of entanglement,
(ii) s < 0.135 for the EPR correlation, and (iii) s < 0.17
for the teleportation fidelity, respectively.

The present study can be further pursued to include
other two-mode input states than the two-mode squeezed
states and multiple coherent operations on each mode. In
fact, for a fair comparison with other second-order oper-

ations, e.g. addition-then-subtraction ââ†b̂b̂†, the coher-
ent operation can be applied twice, although we have
here shown that the single coherent operations already

beat ââ†b̂b̂† in the weak squeezing regime. On another
side, it seems necessary to work out a rigorous description
of quantum teleportation in order to answer some unre-
solved questions, e.g., what is the sufficient or necessary
condition to achieve a success of CV quantum teleporta-
tion beyond Gaussian regime.
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