14 research outputs found

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    The Effects of Progesterone versus Dexamethasone on Brain Oedema and Inflammatory Responses Following Experimental Brain Resection

    No full text
    Free Paper Sessions (Oral & Oral Poster) FP2-O

    A long non-coding RNA signature in glioblastoma multiforme predicts survival

    No full text
    Long non-coding RNAs (lncRNAs) represent the leading edge of cancer research, and have been implicated in cancer biogenesis and prognosis. We aimed to identify lncRNA signatures that have prognostic values in glioblastoma multiforme (GBM). Using a lncRNA-mining approach, we performed lncRNA expression profiling in 213 GBM tumors from The Cancer Genome Atlas (TCGA), randomly divided into a training (n=107) and a testing set (n=106). We analyzed the associations between lncRNA signatures and clinical outcome in the training set, and validated the findings in the testing set. We also validated the identified lncRNA signature in another two independent GBM data sets from Gene Expression Omnibus (GEO), which contained specimens from 68 and 101 patients, respectively. We identified a set of six lncRNAs that were significantly associated with the overall survival in the training set (P≤0.01). Based on this six-lncRNA signature, the training-set patients could be classified into high-risk and low-risk subgroups with significantly different survival (HR=2.13, 95% CI=1.38-3.29; P=0.001). The prognostic value of this six-lncRNA signature was confirmed in the testing set and the two independent data sets. Further analysis revealed that the prognostic value of this signature was independent of age and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. The identification of the prognostic lncRNAs indicates the potential roles of lncRNAs in GBM pathogenesis. This six-lncRNA signature may have clinical implications in the subclassification of GBM

    Inhibition of prolyl 4-hydroxylase, beta polypeptide (P4HB) attenuates temozolomide resistance in malignant glioma via the endoplasmic reticulum stress response (ERSR) pathways

    No full text
    BACKGROUND: Glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor of the central nervous system, is characterized by a relentless disease recurrence despite continued advancement in surgery, radiotherapy, and chemotherapy. Resistance to temozolomide (TMZ), a standard chemotherapeutic agent for GBM, remains a major challenge. Understanding the mechanisms behind TMZ resistance can direct the development of novel strategies for the prevention, monitoring, and treatment of tumor relapse. METHODS AND RESULTS: Our research platform, based on the establishment of 2 pairs of TMZ-sensitive/resistant GBM cells (D54-S and D54-R; U87-S and U87-R), has successfully identified prolyl 4-hydroxylase, beta polypeptide (P4HB) over-expression to be associated with an increased IC50 of TMZ. Elevated P4HB expression was verified using in vivo xenografts developed from U87-R cells. Clinically, we found that P4HB was relatively up-regulated in the recurrent GBM specimens that were initially responsive to TMZ but later developed acquired resistance, when compared with treatment-naive tumors. Functionally, P4HB inhibition by RNAi knockdown and bacitracin inhibition could sensitize D54-R and U87-R cells to TMZ in vitro and in vivo, whereas over-expression of P4HB in vitro conferred resistance to TMZ in both D54-S and U87-S cells. Moreover, targeting P4HB blocked its protective function and sensitized glioma cells to TMZ through the PERK arm of the endoplasmic reticulum stress response. CONCLUSIONS: Our study identified a novel target together with its functional pathway in the development of TMZ resistance. P4HB inhibition may be used alone or in combination with TMZ for the treatment of TMZ-resistant GBM.link_to_OA_fulltextNeuro-oncology, 2013, v. 15 n. 5, p. 562-57
    corecore