105 research outputs found

    Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D <it>in vivo </it>tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells <it>in vitro</it>. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale.</p> <p>Results</p> <p>Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized <it>in situ </it>within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms.</p> <p>Conclusion</p> <p>Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling <it>in vivo </it>growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.</p

    Photophysical and photochemical parameters of octakis (benzylthio) phthalocyaninato zinc, aluminium and tin

    Get PDF
    This paper addresses the synthesis of octa-substituted benzylthio metallophthalocyanines (OBTMPcs) that contain the central metal ions of Zn2+, Al3+ and Sn4+. The ground state absorption of ZnPc(SR)8 (OBTZnPc) along with the ZnPc derivatives, well documented in literature were used to study a new concept called the red shift index (RsI). The concept is based on the empirical values of RsI of the different complexes in solvent media. Unequivocally, parameters used in this paper show strong correlations that are consistent with the results obtained. For instance, RsI of the complexes tend to increase as the refractive index, nD, and solvent donor, DN, of solvent increases. Photodegradation (photobleaching) quantum yield, ϕd measurements of these compounds show that they are highly photostable, ϕd (0.03–0.33 × 10−5). The triplet quantum yield, ϕT (0.40–0.53) and the triplet lifetime, τT (610–810 μs) are within the typical range for metallophthalocyanines in DMSO. The photosensitisation efficiency, SΔ, is relatively high for all the molecules (0.74–0.90)

    Acid Dissociation of 3-Mercaptopropionic Acid Coated CdSe–CdS/Cd0.5Zn0.5S/ZnS Core–Multishell Quantum Dot and Strong Ionic Interaction with Ca2+ Ion

    Get PDF
    By devising careful electrophoresis, it was shown that at pH below 7.0, the electrophoretic mobility of 3-mercaptopropionic acid (3MPA) coated CdSe–ZnS core–shell quantum dots (denoted as QD-3MPA) was very small. At pH above 7.0, QD-3MPA migrated toward the anode, implying acid dissociation, and the degree of which was proportional to the pH value. QD-3MPA’s electrophoretic mobility was impaired after adding sufficient Ca2+ ions to the QD solution and revived when a similar amount of Ca2+ chelators (ethylene glycol tetraacetic acid, EGTA) was added. This demonstrated that acid dissociation and its pH dependence of 3MPA on the QD surface are critical factors in understanding the electric and optical properties of QDs. The acid dissociated QD-3MPA interacted strongly with Ca2+, forming a charge neutral QD-3MPA–Ca2+ complex in the absence of EGTA. First-principles study confirmed the observed experimental evidence. The strong ionic interaction between acid dissociated QD-3MPA and Ca2+ is critical for developing reliable QD-based biosensing assays. Moreover, the strategy and techniques reported in this work are easily applicable to other fluorescent biomarkers and therefore can be important for advancing in vivo and in vitro imaging, sensing, and labeling

    High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation

    Get PDF
    During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation.European Union's Horizon 2020 research and innovation programme, 634113 GermAgeSwedish Cancer SocietySwedish Research CouncilKarolinska InstitutetScience for Life LaboratoryAccepte

    Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.

    Get PDF
    Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale

    Quantification of endogenous and exogenous protein expressions of Na,K-ATPase with super-resolution PALM/STORM imaging

    No full text
    Transient transfection of fluorescent fusion proteins is a key enabling technology in fluorescent microscopy to spatio-temporally map cellular protein distributions. Transient transfection of proteins may however bypass normal regulation of expression, leading to overexpression artefacts like misallocations and excess amounts. In this study we investigate the use of STORM and PALM microscopy to quantitatively monitor endogenous and exogenous protein expression. Through incorporation of an N-terminal hemagglutinin epitope to a mMaple3 fused Na,K-ATPase (α1 isoform), we analyze the spatial and quantitative changes of plasma membrane Na,K-ATPase localization during competitive transient expression. Quantification of plasma membrane protein density revealed a time dependent increase of Na,K-ATPase, but no increase in size of protein clusters. Results show that after 41h transfection, the total plasma membrane density of Na,K-ATPase increased by 63% while the endogenous contribution was reduced by 16%.QC 20190916</p

    Data from: Quantification of endogenous and exogenous protein expressions of Na,K-ATPase with super-resolution PALM/STORM imaging

    No full text
    Transient transfection of fluorescent fusion proteins is a key enabling technology in fluorescent microscopy to spatio-temporally map cellular protein distributions. Transient transfection of proteins may however bypass normal regulation of expression, leading to overexpression artefacts like misallocations and excess amounts. In this study we investigate the use of STORM and PALM microscopy to quantitatively monitor endogenous and exogenous protein expression. Through incorporation of an N-terminal hemagglutinin epitope to a mMaple3 fused Na,K-ATPase (α1 isoform), we analyze the spatial and quantitative changes of plasma membrane Na,K-ATPase localization during competitive transient expression. Quantification of plasma membrane protein density revealed a time dependent increase of Na,K-ATPase, but no increase in size of protein clusters. Results show that after 41h transfection, the total plasma membrane density of Na,K-ATPase increased by 63% while the endogenous contribution was reduced by 16 %
    corecore