2,157 research outputs found
Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: Evolution to the end of core helium burning
Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes â genec, kepler and mesa â to compute non-rotating stellar models of 15, 20 and 25âMâ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30âperâcent â smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models
Looking for imprints of the first stellar generations in metal-poor bulge field stars
© 2016 ESO. Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] 1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims. The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ⌠45 000) and high-signal-tonoise (S=N > 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods. High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results.We confirm that the analysed stars are moderately metal-poor (-1:04â€[Fe/H]â€-0:43), non-carbon-enhanced (non-CEMP) with [C/Fe] â€+0:2, and α-enhanced.We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na-O, Al-O, Al-Mg anti-correlations) were detected in our sample. The heavy elements Y, Zr, Ba, La, and Eu also exhibit oversolar abundances. Three out of the five stars analysed here show slightly enhanced [Y/Ba] ratios similar to those found in other metal-poor bulge globular clusters (NGC 6522 and M 62). Conclusions. This sample shows enhancement in the first-to-second peak abundance ratios of heavy elements, as well as dominantly s-process element excesses. This can be explained by different nucleosynthesis scenarios: (a) the main r-process plus extra mechanisms, such as the weak r-process; (b) mass transfer from asymptotic giant branch stars in binary systems; (c) an early generation of fast-rotating massive stars. Larger samples of moderately metal-poor bulge stars, with detailed chemical abundances, are needed to better constrain the source of dominantly s-process elements in the early Universe
A prototype system for observing the Atlantic Meridional Overturning Circulation - scientific basis, measurement and risk mitigation strategies, and first results
The Atlantic Meridional Overturning Circulation (MOC) carries up to one quarter of the global northward heat transport in the Subtropical North Atlantic. A system monitoring the strength of the MOC volume transport has been operating since April 2004. The core of this system is an array of moored sensors measuring density, bottom pressure and ocean currents. A strategy to mitigate risks of possible partial failures of the array is presented, relying on backup and complementary measurements. The MOC is decomposed into five components, making use of the continuous moored observations, and of cable measurements across the Straits of Florida, and wind stress data. The components compensate for each other, indicating that the system is working reliably. The year-long average strength of the MOC is 18.7±5.6 Sv, with wind-driven and density-inferred transports contributing equally to the variability. Numerical simulations suggest that the surprisingly fast density changes at the western boundary are partially linked to westward propagating planetary wave
High-resolution abundance analysis of red giants in the globular cluster NGC 6522
The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are
very metal-poor stars and in a few individual stars of the oldest known Milky
Way globular cluster NGC 6522,have been interpreted as evidence of early
enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a
bulge globular cluster, the suggestion was that not only the very-metal poor
halo stars, but also bulge stars at [Fe/H]~-1 could be used as probes of the
stellar nucleosynthesis signatures from the earlier generations of massive
stars, but at much higher metallicity. For the bulge the suggestions were based
on early spectra available for stars in NGC 6522, with a medium resolution of
R~22,000 and a moderate signal-to-noise ratio. The main purpose of this study
is to re-analyse the NGC 6522 stars previously reported using new
high-resolution (R~45,000) and high signal-to-noise spectra (S/N>100). We aim
at re-deriving their stellar parameters and elemental ratios, in particular the
abundances of the neutron-capture s-process-dominated elements such as Sr, Y,
Zr, La, and Ba, and of the r-element Eu. High-resolution spectra of four giants
belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT
UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVESconfiguration.
The spectroscopic parameters were derived based on the excitation and
ionization equilibrium of \ion{Fe}{I} and \ion{Fe}{II}. Our analysis confirms a
metallicity [Fe/H] = -0.95+-0.15 for NGC 6522, and the overabundance of the
studied stars in Eu (with +~0.2 < [Eu/Fe] < +~0.4) and alpha-elements O and Mg.
The neutron-capture s-element-dominated Sr, Y, Zr, Ba, La now show less
pronounced variations from star to star. Enhancements are in the range 0.0 <
[Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] <
+0.35,and 0.05 < [Ba/Fe] < +0.55.Comment: date of acceptation: 31/07/2014, in press, 24 pages, 19
figures,Astronomy & Astrophysics, 201
Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses
Arabidopsis thaliana cation exchangers (CAX1 and CAX3) are closely related tonoplast-localized calcium/proton (CaÂČâș/Hâș) antiporters that contribute to cellular CaÂČâș homeostasis. CAX1 and CAX3 were previously shown to interact in yeast; however, the function of this complex in plants has remained elusive. Here, we demonstrate that expression of CAX1 and CAX3 occurs in guard cells. Additionally, CAX1 and CAX3 are co-expressed in mesophyll tissue in response to wounding or flg22 treatment, due to the induction of CAX3 expression. Having shown that the transporters can be co-expressed in the same cells, we demonstrate that CAX1 and CAX3 can form homomeric and heteromeric complexes in plants. Consistent with the formation of a functional CAX1-CAX3 complex, CAX1 and CAX3 integrated into the yeast genome suppressed a CaÂČâș-hypersensitive phenotype of mutants defective in vacuolar CaÂČâș transport, and demonstrated enzyme kinetics different from those of either CAX protein expressed by itself. We demonstrate that the interactions between CAX proteins contribute to the functioning of stomata, because stomata were more closed in cax1-1, cax3-1, and cax1-1/cax3-1 loss-of-function mutants due to an inability to buffer CaÂČâș effectively. We hypothesize that the formation of CAX1-CAX3 complexes may occur in the mesophyll to affect intracellular CaÂČâș signaling during defense responses.Bradleigh Hocking, Simon J. Conn, Murli Manohar, Bo Xu, Asmini Athman, Matthew A. Stancombe, Alex R. Webb, Kendal D. Hirschi and Matthew Gilliha
Implications of changes in seasonal mean temperature for agricultural production systems: three case studies
- The performance of dairy cows will suffer from elevated temperatures, reflecting the extent and uncertainty of projected warming in different scenarios, with a marked increase in heat stress for non-intervention scenarios (A1B and A2) toward the end of the century. This calls for the adoption of protective measures in the management of indoor and outdoor animal environments.
- A substantial risk of a prolonged pest control season for the codling moth (an apple pest) is projected toward the end of the century for Northern Switzerland sites, and mid-century for the Ticino. Timely preventive programs are anticipated to represent a key ingredient of adaptation to changing risks from agricultural pests.
- Results suggest that in the near future viticulture could benefit from increasing temperatures as a wider range of grape varieties could be grown. Toward the end of the century negative impacts from extreme temperatures are nevertheless expected to become important
The effect of 12C + 12C rate uncertainties on s-process yields
The slow neutron capture process in massive stars (the weak s-process)
produces most of the s-only isotopes in the mass region 60 < A < 90. The
nuclear reaction rates used in simulations of this process have a profound
effect on the final s-process yields. We generated 1D stellar models of a 25
solar mass star varying the 12C + 12C rate by a factor of 10 and calculated
full nucleosynthesis using the post-processing code PPN. Increasing or
decreasing the rate by a factor of 10 affects the convective history and
nucleosynthesis, and consequently the final yields.Comment: Conference proceedings for the Nuclear Physics in Astrophysics IV
conference, 8-12 June 2009. 4 pages, 3 figures. Accepted for publication to
the Journal of Physics: Conference Serie
3D hydrodynamic simulations of carbon burning in massive stars
We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15âMâ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged NavierâStokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large PĂ©clet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (âRiBâα, 0.5 âČ Î± âČ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing
- âŠ