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ABSTRACT

We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent

convection of carbon burning in massive stars. Simulations begin with radial profiles mapped

from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models

with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning

simulations are very similar to the oxygen-burning case. We performed a mean field analysis

of the kinetic energy budgets within the Reynolds-averaged Navier–Stokes framework. For

the upper convective boundary region, we find that the numerical dissipation is insensitive to

resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower

boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation

suggesting it is not yet numerically converged. We find that the widths of the upper and

lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights,

respectively. The shape of the boundaries is significantly different from those used in stellar

evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at

both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime

found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk

Richardson number, RiB (∝RiB
−α , 0.5 � α � 1.0). We thus suggest the use of RiB as a means

to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of

convective boundary mixing.

Key words: convection – hydrodynamics – turbulence – stars: evolution – stars: interiors –

stars: massive.

1 IN T RO D U C T I O N

1D stellar evolution codes are currently the only way to simulate the

entire lifespan of a star. This comes at the cost of having to replace

complex, inherently 3D processes, such as convection, rotation, and

magnetic activity, with generally simplified mean-field models. An

essential question is ‘how well do these 1D models represent real-

ity?’ Answers can be found both in empirical and theoretical works.

On the empirical front, we can investigate full star models, by com-

paring them to observations of stars under a range of conditions,

as well as testing the basic physics that goes into models of multi-

dimensional phenomena by studying relevant laboratory work and

⋆ E-mail: a.j.cristini@keele.ac.uk (AC); r.hirschi@keele.ac.uk (RH);

wdarnett@gmail.com (DA)

data from meteorology and oceanography (remembering that stars

are much bigger than planets, and are composed of high-energy den-

sity plasma). On the theoretical side, multidimensional simulations

can be used to test 1D models under astrophysical conditions that

can be recreated in terrestrial laboratories only in small volumes,

e.g. in National Ignition Facility (NIF) (Kuranz et al. 2011) and

z-pinch device (Miernik et al. 2013) experiments.

1.1 Astronomical tests

The results from the astronomical validation studies are mixed. Ob-

servations of stars confirm the general, qualitative picture of stellar

evolution predicted by 1D models, but reveal significant quantita-

tive differences. A recent example is the work of Georgy, Saio &

Meynet (2014) and Martins & Palacios (2013) who show that the

use of different criteria for convection (i.e. either Schwarzchild

C© 2017 The Authors

Published by Oxford University Press on behalf of the Royal Astronomical Society

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

7
1
/1

/2
7
9
/3

8
7
1
3
7
3
 b

y
 L

iv
e
rp

o
o
l J

o
h
n
 M

o
o
re

s
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 0

6
 S

e
p

te
m

b
e
r 2

0
1
8

mailto:a.j.cristini@keele.ac.uk
mailto:r.hirschi@keele.ac.uk
mailto:wdarnett@gmail.com


280 A. Cristini et al.

or Ledoux) leads to important differences in the overall

evolution of a massive star, especially for the post-main-sequence

evolution. Without a constraint on which criteria, if either, is the

correct one, this result represents an inherent uncertainty in 1D

models.

These quantitative discrepancies can be reduced by modifying

the treatment of convective boundaries, and more specifically, by

allowing for convective penetration and overshooting (Zahn 1991).

Incorporating a model for mixing beyond the linearly stable con-

vective boundaries (e.g. that given by the Ledoux or Schwarzchild

criteria) introduces additional parameters that can be tuned to im-

prove agreement between model and data (Freytag, Ludwig &

Steffen 1996). However, this approach has several drawbacks be-

yond the obvious one of overfitting so as to preclude a predictive

model. Perhaps the most egregious is that parameter fitting is never

done in a global sense so that different phases of evolution require

different parameters, thus revealing the non-universality of these

models. Another recent example is the finding that stellar models of

red giants agree with Kepler observations only when a metallicity-

dependent mixing length is used (Tayar et al. 2017).

1.2 Computational methods and assumptions

The most obvious way to proceed computationally is by direct

numerical simulation (DNS), in which all relevant scales of the

turbulent cascade are resolved. This is not feasible with present

or foreseeable computer power. The Reynolds numbers for stars

are enormous (e.g. Re ≈ 1018, Arnett, Meakin & Viallet 2014),

simply because stellar dimensions are so much larger than mean-

free paths for dissipation. DNS requires an infeasible dynamic

range in order to include both the microscopic and macroscopic

scales; for example the state-of-the-art DNS work of Jonker et al.

(2013) attained a Reynolds number of 103 with a Péclet number of

unity.

An alternative is possible. The largest eddies contain most of

the energy in a turbulent cascade. Kolmogorov’s second similarity

hypothesis, which posits that the rate of dissipation in a turbulent

flow as well as the statistics in the inertial sub-range do not de-

pend upon the detailed nature of the dissipative process, implies

that it may be unnecessary to resolve the dissipation sub-range to

accurately calculate scales above the Kolmogorov scale, provided

that the behaviour of the sub-grid dissipation is well behaved. This

phenomenology has indeed been supported by detailed numerical

studies (see Aspden et al. 2008). Even early implicit large eddy sim-

ulations (ILES) with relatively coarse resolution (Meakin & Arnett

2007b) gave Kolmogorov dissipation at the sub-grid scale; this is

because they use a finite volume and total variations diminishing

solver (piecewise parabolic method, PPM; see Colella & Woodward

1984), ensuring that mass, momentum, and energy are conserved

and variance is dissipated at the grid scale.

Comparative studies of using DNS to solve the compressible

Navier–Stokes equations and ILES to solve the inviscid Euler equa-

tions using PPM have been performed (Porter & Woodward 2000;

Sytine et al. 2000). Comparisons were made on grids with sizes

from 643 to 10243. Both methods were found to converge to the

same limit with increasing resolution. A factor in deciding whether

DNS or ILES is a more suitable choice depends on whether the

phenomena of interest require resolution of the dissipative range or

not. We currently do not have a compelling argument for resolving

the dissipation range in the current work.

Furthermore, the additional information provided explicitly by

DNS, such as dissipation rates, can often be estimated very accu-

rately when the ILES method is used in conjunction with Reynolds-

averaged Navier–Stokes (RANS) methods; at least in the mean.

This is a point we discuss in Section 4.4 below and in Viallet et al.

(2013), Arnett et al. (2015), and Arnett & Meakin (2016).

1.3 Stellar simulations

ILES simulations sampling a broad range of relevant and in-

creasingly more realistic astrophysics conditions have been under-

taken. Neutrino cooling becomes dominant after helium burning, so

that later stages have increasingly shorter thermal time-scales (see

Arnett 1996, pp. 284–292), which are insensitive to radiative dif-

fusion or heat conduction (high Péclet number,1 Pe ≫ 1). Oxygen

burning has both a relatively simple nuclear-burning process, and

a short thermal time, so that a small but significant fraction of the

burning stage may be simulated (Meakin & Arnett 2007b), with a

Damköhler number,2 Da, approaching 1 per cent (see Table A1 for

estimates of Da for various burning stages).

Many oxygen-burning simulations have been performed, giv-

ing an improved understanding of the process; e.g. Arnett (1994),

Bazan & Arnett (1994), Bazán & Arnett (1998), Asida & Arnett

(2000), Kuhlen, Woosley & Glatzmaier (2003), Young et al. (2005),

Meakin & Arnett (2006), Meakin & Arnett (2007a), Meakin &

Arnett (2007b), Arnett & Meakin (2011a), Viallet et al. (2013), Ar-

nett et al. (2015), Arnett & Meakin (2016), and Jones et al. (2017).

Silicon burning is the most complex burning phase, complicated

by active nuclear weak interactions, and requires a large additional

computational effort. The evolution time-scale is of the order of

days (Da ∼ 1 and Pe ≫ 1). Early simulations of silicon burning

(Bazán & Arnett 1997) used a nuclear reaction network consisting of

123 nuclei. Meakin (2006) and Arnett & Meakin (2011a) performed

2D simulations of concentric carbon-, oxygen-, and silicon-burning

shells using a 37 species network for several convective turnovers

about one hour prior to core collapse. Couch et al. (2015) simulate

the final three minutes of silicon burning in a 15 M⊙ star, using

the FLASH code (Fryxell et al. 2000) with adaptive mesh refinement,

and a nuclear reaction network of 21 species. An initial study of

silicon burning with a large network (∼120 nuclei) has been carried

out by Meakin & Arnett (in preparation). The carbon, oxygen, and

part of the silicon shell of an 18 M⊙, unrelaxed spherical star have

also been simulated, in a full-sphere simulation with low resolution

(400 × 148 × 56) by Müller et al. (2016).

Early phases of stellar evolution are harder to simulate because

they are generally characterized by very small Damköhler numbers

(slow burning) and very low convective Mach numbers (slow mix-

ing). Several studies have targeted hydrogen- or helium-burning

phases. Meakin & Arnett (2007b) performed a fully compress-

ible simulation of core hydrogen burning on a numerical grid of

400 × 1002, with the driving luminosity boosted by a factor of

10. Gilet et al. (2013) adopt the low Mach number solver MAESTRO

(Almgren, Bell & Zingale 2007) to simulate core hydrogen burning

on a numerical grid of 5123. This type of solver removes the need

1 The Péclet number is the ratio of the time-scale for transport of heat

through conduction to the time-scale for transport of heat through advection,

or Pe = vL/χ , where v and L are the characteristic velocity and length-scale

of the flow and χ is the heat diffusivity (e.g. Lautrup 2011, p. 380).
2 The Damköhler number is the ratio of the advective time-scale to the

chemical/nuclear time-scale (Damköhler 1940), or Da = τ c /(qXi/ǫnuc),

where τ c is the convective turnover time and ǫnuc, q, and Xi are the energy

generation rate, specific energy released, and abundance fraction for the

dominant nuclear reaction, respectively.

MNRAS 471, 279–300 (2017)
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3D simulations of carbon burning 281

to follow the propagation of acoustic waves, and allows for longer

time-steps than a fully compressible solver, but would neglect any

important kinetic energy transfer due to acoustic fluxes.

We have performed novel calculations of a yet to be simulated

phase of evolution, the carbon phase in a massive star, which we

studied in a burning shell within a 15 M⊙ massive star. Carbon

burning is the first neutrino-cooled-burning stage, thus allowing

radiative diffusion to be neglected (Pe ≫ 1) and slightly simplify-

ing the numerical model. It is characterized by a larger Damköhler

number than earlier, radiatively cooled stages, alleviating the com-

putational cost. The initial composition and structure profiles are

simpler than those of more advanced stages, because the region

in which the shell forms is smoothed by the preceding convective

helium-burning core. Finally, as the first neutrino dominated phase

of nuclear burning it plays an important role is setting the size of

the heavy element core which subsequently forms and in which a

potential core-collapse event may take place. We are particularly in-

terested in the structure of convective boundaries and composition

gradients, in this sense we explore the effects of resolution (zoning)

upon the simulations. Composition is treated as an active scalar,

and coupled to the fluid flow through advection and the equation of

state (EOS).

The structure of the paper is as follows. In Section 2, we dis-

cuss the stellar model from which the initial conditions for our

hydrodynamic models were selected. In Section 3, we describe our

simulation model set-up. Our results and analysis of the hydrody-

namic models are presented in Section 4. We compare our models to

similar simulations in Section 5. Finally, in Section 6, we summarize

our results.

2 IN I T I A L C O N D I T I O N S

2.1 The 1D stellar evolution model

To prepare the input for the 3D carbon-burning simulations, we

calculated a 15 M⊙, solar metallicity, non-rotating model until the

end of the oxygen-burning phase using the Geneva stellar evo-

lution code (GENEC; Eggenberger et al. 2008). The default input

physics used in GENEC to calculate this model includes: a nuclear

reaction network of 23 isotopes using the Nuclear Astrophysics

Compilation of Reaction Rates (NACRE) (Angulo et al. 1999) tab-

ulated reaction rates; EOS describing a perfect gas, partial degen-

eracy, and radiation; opacity tables from the OPAL group (Rogers,

Swenson & Iglesias 1996) and Alexander & Ferguson (1994) for

high and low temperatures, respectively; mass loss estimated ac-

cording to the prescriptions by Vink, de Koter & Lamers (2001) and

de Jager, Nieuwenhuijzen & van der Hucht (1988); concentration

and thermal diffusion; convection treatment using mixing length

theory (MLT) with αml = 1.6 (Schaller et al. 1992); convective

boundary positions determined using the Schwarzschild criterion

(Schwarzschild & Voigt 1992); and penetrative convective over-

shoot (Zahn 1991) up to 20 per cent (Stothers & Chin 1991) of the

pressure scaleheight for core hydrogen and helium burning only.

Fig. 1 presents the evolution of the convective structure of this

15 M⊙ model. Convectively unstable regions are indicated in this

figure by shaded areas with colour indicating the convective Mach

number, which slowly rises as the star evolves, being lowest in the

core and highest in the envelope.

2.2 An overview of stellar convection parameters

In order to place the results of our carbon shell simulations into the

broader context of stellar convection over the lifetime of the star, as

Figure 1. Structure evolution diagram of the 15 M⊙ 1D input stellar model.

The horizontal axis is a logarithmic scale of the time left before the predicted

collapse of the star in years (the last model in this simulation is before the

end of silicon burning, but since the time-scale of silicon burning is so short

this does not affect the plot for the earlier phases) and the vertical axis is

the mass in solar masses. The total mass and radial contours (in the form

log10(r) in cm), are drawn as solid black lines. Shaded areas correspond to

convective regions. The colour indicates the value of the Mach number. The

red vertical bar around log[time left in years] ∼1.5 represents the domain

simulated in 3D, and the time at which the 3D simulations start, relative to

the evolution of the star.

well as inform the construction of initial states for future simula-

tions, we have estimated key quantities for most of the convective

zones in the 15 M⊙ model (Fig. 1). These quantities include the

bulk Richardson number, RiB (equation A5); convective velocity, vc

(equation A6); Mach number, Ma (equation A7); Péclet number, Pe

(equation A8); and Damköhler number, Da (equation A10). These

values and the methods by which they have been calculated are

presented in Appendix A. These are order of magnitude estimates

intended to show trends between different stages of evolution.

One additional key property of the advanced convective regions

in massive stars is the radial extent (see the radial contours in Fig. 1).

For the mass range that we consider, such convective regions typi-

cally span only a few pressure scaleheights (0.2–5), convection, in

this case, is classified as shallow.3 Consequently, convective mo-

tions might be expected to resemble at least some characteristics

of the classical description of convective rolls proposed by Lorenz

(1963), a hypothesis that shows some validity according to the re-

sults of Arnett & Meakin (2011b).

Referring to Table A1, the 1D model (shown in Fig. 1) shows a

general increase in the convective velocities and the Mach, Péclet,

and Damköhler numbers as the star evolves. Some additional trends

of interest include the following.

Convective velocity. The convective velocities range from about

5 × 104 cm s−1 during the early phases to a few times 106 cm s−1

during the advanced phases.

Mach number. The Mach number ranges from a few times 10−4 (val-

ues lowest for helium and carbon burning) to close to 10−2 (several

times 10−2 for 3D simulations). Note that the Mach number may

still increase further during silicon burning and the early collapse

as found by Arnett (1996) and Müller et al. (2016).

Péclet number. The Péclet number is always much larger than one,

with a minimum around 1000 during hydrogen burning and up

3 An example of deep convection is in the envelopes of red giants, which

extends over many pressure scaleheights.

MNRAS 471, 279–300 (2017)
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to 1010 during the advanced phases. Radiative effects may still

dominate at smaller scales as discussed in Viallet et al. (2015)

and they certainly play an important role during the early stages

of stellar evolution. As mentioned in Section 1, for most of the

convective phases, the evolutionary time-scale is much larger than

the advective time-scale (Da ∼10−7 for hydrogen burning). Only

during the later stages of evolution do these time-scales become

comparable (Table A1; Da >10−4).

For carbon and oxygen burning, Pe ≫106. This is a consequence

of neutrino cooling, which shortens the thermal time-scale but does

not affect the radiative/conductive cooling rate. The specific entropy,

S, obeys

dS/dt = ∂S/∂t + (1/ρ)∇·vρS = ǫ/T − (1/ρT )∇·Frad, (1)

where ρ, v, T , and Frad are the density, flow velocity, temperature,

and radiative flux, respectively. ǫ = ǫnuc + ǫν is the net heating from

nuclear burning and neutrino cooling. If ǫ = 0, Rayleigh’s criterion

for convection may be derived (Turner 1973). If Frad = 0 then the

condition for simmering convection during a thermal runaway may

be found (Arnett 1968).

Bulk Richardson number. Another important result relates to the

bulk Richardson number which is a measure of the stiffness of the

convective boundary, as well as of the boundary mixing rate. A key

factor in RiB is the buoyancy jump at the boundary (equation A4)

which has contributions from both entropy and mean molecular

weight (μ) gradients. At the start of burning, the thermal component

of the entropy gradient dominates. However, as nuclear burning

proceeds, the μ gradient increases and starts to dominate over the

thermal component. Even during the hydrogen-burning phase where

the convective core continuously recedes, the μ gradient ultimately

dominates over the thermal component.

The Richardson number4 measures the ratio of potential energy

from stable stratification to the turbulent kinetic energy (TKE) at

the boundary, and so provides an asymptote for entrainment solu-

tions; mixing is limited by the energy available. The actual rate of

entrainment depends also upon the effectiveness with which that

energy is deposited in the stable layer rather than being advected

back into the convective region (which may be related to the Péclet

number). DNS simulations (e.g. Jonker et al. 2013) typically use

Pe ∼1, appropriate for air and not far from Pe ∼7 which may be

more appropriate for water. Experiments usually have comparable

Péclet numbers.

During the advanced burning stages (C, Ne, O, and Si burning),

the convective core grows during most of the stage and the boundary

becomes ‘stiffer’ as μ gradients increase. As the end of the burning

stage is approached, the convective regions recede and the boundary

stiffness decreases as the μ gradient is weakened.

We compared the bulk Richardson number between different

phases and found in general that the boundary was at its ‘stiffest’

during the maximum mass extent of the convective regions, and

‘softest’ at the very end of each burning stage. The values we

estimated for RiB for core carbon and oxygen burning (see Table A1)

agree well with the trend described above. The evolution of RiB

for the other core-burning stages, however, does not necessarily

follow the same trend. This is partly due to the fact that it is not

straightforward to estimate RiB from a 1D model. In particular, it is

4 Here, we use the bulk Richardson number to denote a global measure of

the stiffness of boundaries, but do not preclude the possibility that other

varieties of Richardson number may eventually prove advantageous (e.g.

Arnett et al. 2015).

Figure 2. Convective structure evolution diagram of the 15 M⊙ stellar

model used as initial conditions in a 3D hydrodynamics simulation friendly

format. The horizontal axis is the time relative to the start of the 3D simu-

lations (τ hydro). The vertical axis is the radius in 109 cm. Mass contours in

solar masses are shown by black lines and nuclear energy generation rate

contours by coloured lines, dark red corresponds to 109 erg g−1 s−1, and

the remaining colours decrease by one order of magnitude. Blue and pink

shading represent regions of negative and positive net energy generation,

respectively. Grey-shaded areas correspond to convective regions. The ver-

tical red bar indicates the start time and radial extent of the hydrodynamical

3D simulation. The physical time of the simulation is on the order of 1 h,

still much shorter than the time-scale of this plot.

not easy to define the integration length, 	r to be used in calculating

the buoyancy jump defined in equation (A4) (see Cristini et al. 2016,

for additional details).

RiB, and thus the character of stellar convective boundaries, can

be expected to vary significantly during the course of stellar evo-

lution. Therefore, developing a convective boundary mixing model

that incorporates this information would be a major advancement

over most of the models currently in use.

Finally, the lower boundary of the convective shells are con-

sistently found to be stiffer than the upper boundary. This has

important implications for astrophysical phenomena that involve

convective boundary mixing (CBM) at the lower boundaries of con-

vective shells. For example, the onset of novae (Denissenkov et al.

2013a), and flame front propagation in S-asymptotic giant branch

stars (Denissenkov et al. 2013b) which can change the model from

being an electron-capture supernova progenitor to a core-collapse

supernova progenitor (Jones et al. 2013).

2.3 Initial model for 3D hydrodynamic simulations

We focus in this study on the second carbon-burning shell of the

15 M⊙ star shown in Fig. 1. Choosing the carbon shell as opposed

to the core allows us to study two physically distinct boundaries

rather than one.

Fig. 2 presents a Kippenhahn diagram for the carbon shell region.

The vertical red bar in this figure shows the time at which the

simulations start as well as the vertical extent of the computational

domain used. The horizontal axis shows the age of the star relative to

its age at the start of the 3D hydrodynamic simulations. We can see

in Fig. 2 that the 3D simulations correspond to the initial phase of

the carbon-burning shell, during which the convective shell grows

MNRAS 471, 279–300 (2017)
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3D simulations of carbon burning 283

in mass in the 1D model. The physical time of the 3D simulations,

however, is on the order of hours, much shorter than the time-scale

on the horizontal axis. Furthermore, the bottom of the convective

shell is stable (horizontal mass contour for 1.2 M⊙). Thus, we do

not expect strong structural re-arrangements (not considered in the

3D simulations as we are using a constant gravity, see Section 3.3)

to occur over the time-scale of the 3D simulations. The mass extent

of the computational domain is 0.4 M⊙ < M < 2.1 M⊙ and as can

be seen in Fig. 2, the domain contains a stable radiative zone on

both sides of the convective shell.

3 3 D H Y D RO DY NA M I C S I M U L AT I O N S

3.1 The physical model

We compute 3D hydrodynamic simulations using the PROMPI code

(Meakin & Arnett 2007b). PROMPI is a finite-volume, Eulerian code

derived from the legacy astrophysics code PROMETHEUS (Fryxell,

Müller & Arnett 1989), which uses the PPM of Colella & Woodward

(1984). PROMPI is parrallelized using the message passing interface

(MPI). The base hydrodynamics solver can be complemented by

several microphysics prescriptions: the Helmholtz EOS of Timmes

& Swesty (2000); an arbitrary nuclear reaction network; self-gravity

in the Cowling approximation (e.g. pg. 86 of Prialnik 2000) relevant

for deep interiors; multispecies advection; and radiative diffusion

(although neglected in these simulations).

PROMPI solves the Euler equations (inviscid approximation), given

by:

∂ρ

∂t
+ ∇ · (ρ v) = 0; (2)

ρ
∂v

∂t
+ ρ v · ∇v = −∇p + ρ g; (3)

ρ
∂Et

∂t
+ ρ v · ∇Et + ∇ · (p v) = ρ v · g + ρ(ǫnuc + ǫν); (4)

ρ
∂Xi

∂t
+ ρ v · ∇Xi = Ri, (5)

where p is the pressure, g the gravitational acceleration, Et the total

energy, Xi the mass fraction of nuclear species i, and Ri the rate of

change of nuclear species i.

While there is evidence that magnetic fields will be generated

in deep interior convection (e.g. Boldyrev & Cattaneo 2004) and

that rotational instabilities (e.g. Maeder et al. 2013) may play an

important role in shaping convection, we focus purely on the hy-

drodynamic aspects in the current study, which remains a problem

of significant complexity with many outstanding issues.

Energy generation during carbon burning proceeds mainly via

fusion of two 12C nuclei. For stellar conditions, considering only

the main exit channels (α and p) will result in no significant errors

(Arnett 1996). The n exit channel branching ratio is only bn = 0.02,

so for this study we only consider energy generation due to the α

and p channels. We estimated the carbon-burning energy generation

rate in our 3D simulations with a slightly modified version of the

parametrization given by Audouze, Chiosi & Woosley (1986) and

Maeder (2009):

ǫ12C ∼ 4.8 × 1018 Y 2
12 ρ λ12,12, (6)

where Y12 = X12C/12, λ12,12 = 5.2 × 10−11 T9
30, and T9 = T/109.

This simplification to the nuclear physics allows us to represent

the stellar material using only three compositional quantities: the

average atomic mass Ā, average atomic number Z̄, and the carbon

abundance X12C. The mass and charge are required for the EOS

and to represent the mean properties of all other species besides
12C. Thus, the composition is an active scalar, and coupled to the

flow through the EOS and mixing. A further simplification is that

the change of 12C due to nuclear burning was ignored because

of its negligible rate of change relative to advective mixing over

such short time-scales (i. e. the carbon shell is characterized by

a very small Damköhler number, Da ∼10−4, see Table A1). The

key important feature retained with this prescription of the nuclear

burning is the interaction and feedback between the nuclear burning

and hydrodynamic mixing, while keeping computational costs to a

minimum.

Cooling via neutrino losses is parametrized using the analytical

formula provided by Beaudet, Petrosian & Salpeter (1967) which in-

cludes all of the relevant processes: pair creation reactions, Compton

scattering, and plasma neutrino reactions. The cooling is essentially

constant over the simulation time and its details are not important

for our purposes.

3.2 The computational domain

Approximations are necessary to simulate a meaningful physical

time. In this study, we follow the ‘box-in-star’ approach (Arnett &

Meakin 2016) and we use a Cartesian coordinate system and a plane-

parallel geometry. We evolve the model with time-steps determined

by the Courant condition, using a Courant factor of 0.8. Our com-

putational domain represents a convective region of thickness, t,

bounded either side by radiative regions of thickness, t/2. The as-

pect ratio of the convective zone is therefore 2:1 (width:height),

and so a plane-parallel approximation is not ideal and is the first

major simplification of our set-up. We made this choice to allow

us to ease the difficult Courant time-scale condition at the inner

boundary of the grid allowing for longer run-times, as well as better

resolution near convective boundaries. Direct comparison with the

oxygen-burning simulations, which use a spherical grid, suggest

that no significant error results.

In order to study the complete convective region, and also stable

region dynamics (such as wave propagation), we chose to include

the entire convection zone and portions of the adjacent stable re-

gions. The radial extent of the domain in relation to the stellar

model initial conditions is illustrated in Fig. 2 by the vertical red

bar. The computational domain extends in the vertical (x) direction

from 0.42 × 109 cm to 2.30 × 109 cm, and in the two horizontal

directions (y and z) from 0 to 1.88 × 109 cm, see Fig. 3.

We found that the aspect ratio for the convective zone of 2:1 was

the required minimum for unrestricted circulation of turbulent fluid

elements. The radial extent of the computational domain represents

4 × 10−5 of the total radius of the star, which is 4.6 × 1013 cm. At

the chosen evolutionary stage, the shell is expanding, as can be seen

in Fig. 2, and the luminosity is driven by a peak in nuclear energy

generation of ∼109 erg g−1 s−1 at x ∼ 0.9 × 109 cm.

The computational domain uses reflective boundary conditions

in the vertical direction and periodic boundary conditions in the

two horizontal directions. Although the material in the radiative

regions is stable against convection, it has oscillatory g-mode mo-

tions excited by the adjacent convection zone. In order to mimic the

propagation of these waves out of the domain, we employ a damp-

ing region that extends radially between a radius of 0.6 × 109 cm

and the lower domain boundary at 0.42 × 109 cm. The damping

region covers the full horizontal extent of the computational domain

in between these radii. Within this region, all velocity components
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284 A. Cristini et al.

Figure 3. The geometry of the computational domain. Gravity is aligned

with the x-axis. The blue region depicts the approximate location of the con-

vectively unstable layer at the start of the simulation, while the surrounding

green volumes depict the locations of the bounding stably stratified layers.

are reduced by a common damping factor, f, resulting in damped

velocities over the damping region, vd = f v. The damping factor

is defined as

f = (1 + δt ωfd)−1 , (7)

where δt is the time-step of the simulation, ω = 0.01 is the damp-

ing frequency and is a free parameter chosen to correspond to a

small fraction of the convective turnover. fd = 0.5 (cos (πr/r0) +

1), where r is the radial position in the vertical direction and

r0 = 0.6 × 109 cm is the edge of the damping region in the vertical

direction. Using this damping function, fd = 0 at r = r0, where the

damping region starts. This ensures a smooth transition between the

non-damped and damped regions.

To test the dependence of our results on numerical resolution,

we simulated the carbon shell at four different resolutions. These

models are named according to their resolution:lrez - 1283,mrez

- 2563, hrez - 5123, and vhrez - 10243.

Whether a computed flow will exhibit turbulence depends on the

spatial and temporal discretization that is used. In the following, we

explore heuristically the 3D modelling of turbulence on a discrete

grid.

3.2.1 Spatial zoning considerations

A useful dimensionless number for determining the degree of turbu-

lence in a simulation is the effective or numerical Reynolds number,

a discrete analogue of the Reynolds number. It can be defined using

the following arguments.

Kolmogorov (1941) showed that the rate of energy dissipation

at any length-scale, λ (between the inertial range and Kolmogorov

scale), is given by ǫλ ∼ v3
λ/λ, where vλ is the flow velocity at that

scale. This relation can be applied at the extreme scales of the

simulation, i.e. at the integral scale and the grid scale to give

ǫℓ =
v3

rms

ℓ
and ǫ	x =

	u3

	 x
, respectively, (8)

where 	u is the flow velocity across a grid cell. This velocity

can also be used to define an effective numerical viscosity at the

grid scale

νeff = 	u	x. (9)

For a turbulent system within a statistically steady state,

Kolmogorov (1962) showed that the rate of energy dissipation is

equal at all scales. Applying this equality to equation (8) yields

(with the use of equation 9)

νeff = vrmsℓ

(

	x

ℓ

)4/3

. (10)

Therefore, the effective Reynolds number can be expressed as

Reeff =

(

ℓ

	x

)4/3

∼ N 4/3
x , (11)

where Nx is the number of grid points in the vertical direction.

In these simulations, this is a slight overestimate as in the vertical

direction only half of the grid points represent the convective region.

Within the ILES paradigm, the effective Reynolds number is

therefore limited by the momentum diffusivity5 at the grid scale

(equation 9), and as demonstrated by equation (11), it is the choice

of spatial zoning that sets an upper limit on the degree of turbu-

lence. The effective Reynolds numbers of our simulations (Nx =

128–1024) therefore range from around 650 to 104, suggesting that

we are within the turbulent regime (Reeff � 1000) for the finer

grids.6

3.2.2 Time-scale considerations

The convective turnover time, τ c (twice the transit time), is the

time needed to set up the turbulent velocity field (Meakin &

Arnett 2007b), following the initial perturbations in temperature

and density. Therefore, the convective turnover time is the minimum

time-scale required for simulating turbulence. For carbon burning,

the turnover time is τ c ∼ 6.7 × 103 s. The maximum time-step

size allowed by the explicit hydrodynamic solver is 	tmax = 	x/cs,

where the sound speed is approximately cs ∼ 4.5 × 108 cm s−1.

Therefore, the minimum number of time-steps needed to simulate

a convective turnover time is N	t ∼ Nx/Ma = csτc/	x for Mach

number Ma. For the hrez zoning (Nx = 512), the required number

of time-steps equates to 8.2 × 105, which would exceed the available

computer resource budget.

Hence, as one may guess intuitively, the modelling of smaller ve-

locities requires more time-steps. One option to overcome this issue

is to scale the velocity up by scaling the nuclear energy generation

rate. Scaling the burning rate by a factor of 1000 (this only scales

the velocity up by a factor of 10) reduces the convective turnover

time to τ c ∼ 670 s, and the minimum number of time-steps required

to establish a turbulent flow decreases to N	t ∼ 8.2 × 104, for the

hrez zoning, which is comfortably attainable given the available

computational resources.

3.2.3 Boosting factor

A boosting factor of 103 for the nuclear energy generation rate was

chosen in order for the simulations to match the turbulent driving

5 The actual numerical dissipation of the PPM method is highly complex and

non-linear (Sytine et al. 2000); the highest resolution simulations presented

here seem to capture the effective dissipation accurately.
6 This is supported by visual comparison of our simulations with experi-

mental data (e.g. van Dyke 1982).
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3D simulations of carbon burning 285

Figure 4. Left: initial radial density (solid) and entropy (dashed) profiles. Right: initial radial buoyancy (solid) and composition (dashed) profiles. 1D stellar

evolution profiles calculated using GENEC (blue) are compared with the same profiles integrated and mapped on to the Eulerian Cartesian grid in PROMPI (green).

observed in oxygen-shell-burning simulations (∼1012 erg g−1 s−1;

Meakin & Arnett 2007b).

In such simulations, there is no need to worry about the effect

that such a boost in driving will have on the thermal diffusion in the

model as it can be safely ignored in the bulk of the convective zone.

This is because thermal diffusivity is negligible in comparison to

the loss of heat through escaping neutrinos produced in the plasma

(Arnett 1996, pp. 284–292), and so thermal diffusion implicitly

only becomes important at the sub-grid scale (see also discussion in

Viallet et al. 2015). Although future studies are needed to confirm

the Péclet number in the boundary layers, Arnett et al. (2015) argue

that thermal diffusivity is also very small in the boundary regions

of the oxygen-burning shell, which would also apply to our boosted

carbon shell. They show that a large Péclet number leads to an

adiabatic expansion of the convective boundary.

This boosting of the driving luminosity does not have any dynam-

ical effect on the shell structure, given the short physical time-scales

of the simulations. The convective velocities and boundary mixing

rates will be increased though, compared to the astrophysical sce-

nario being modelled. A key advantage to this approach is that more

convective turnovers can be simulated for the given physical time

that is being modelled, but it does highlight an important sensitivity

of the hydrodynamic flow to the numerical set-up. Additionally, as

the nuclear luminosity has been boosted the neutrino losses con-

tribute negligibly to the thermal evolution of the model.

3.3 Initial conditions and runtime parameters

The initial vertical extent of the convective region (0.90 × 109 cm �

x � 1.87 × 109 cm) can be seen through the entropy, buoyancy, and

composition profiles in Fig. 4. The convective region is apparent

through the homogeneity of these quantities due to strong mixing,

while the boundaries are defined by sharp jumps.

An initial hydrostatic structure in PROMPI was reconstructed from

the entropy, composition, and gravitational acceleration profiles

taken from the GENEC 1D model. Stellar models do not have regu-

larly spaced mesh points in the radial direction given the fact that

they use a Lagrangian method and so the spatial resolution is some-

times coarse, especially at convective boundaries. For this reason,

the 1D GENEC profiles of the entropy (s), average atomic mass (Ā),

and average atomic number (Z̄) were first remapped on to a finer

grid mesh before linearly interpolating on to the Eulerian grid in

PROMPI. The details of this remapping can be found in Appendix B.

There is no nuclear-burning network in this model, in the sense

that we do not follow the depletion of 12C through nuclear burning,

but only through mixing. The abundance variables Ā, Z̄, and X12C

are somewhat redundant though, as the electron fraction Ye = Z̄/Ā

does not change.

To ensure the model is in hydrostatic equilibrium, the density

ρ (s, p, Ā, Z̄) was integrated along the new radial grid according

to:

∂ρ

∂r
=

ds

dr

(

∂ρ

∂s

)

p,Ā,Z̄

+
dp

dr

(

∂ρ

∂p

)

s,Ā,Z̄

+
dĀ

dr

(

∂ρ

∂Ā

)

s,p,Z̄

+
dZ̄

dr

(

∂ρ

∂Z̄

)

s,p,Ā

, (12)

the second term is simplified by enforcing hydrostatic equilibrium

to within a tolerance of 10−10, given by:

dp

dr
= −ρg. (13)

For our plane-parallel geometry set-up, the gravitational accelera-

tion was parametrized by a function of the form g(r) = A/r, with

constant A = 1.5 × 1017 cm2 s−2. The total derivatives ds/dr, dĀ/dr ,

and dZ̄/dr were calculated from the fitted profiles introduced ear-

lier. The partial derivatives ∂ρ/∂s, ∂ρ/∂p, ∂ρ/∂Ā, and ∂ρ/∂Z̄

were calculated using the Helmholtz EOS (Timmes & Arnett 1999;

Timmes & Swesty 2000). Fig. 4 shows the density, entropy, buoy-

ancy, and average atomic mass profiles for the stellar model initial

conditions, and the corresponding initial profiles that were mapped

on to the Eulerian grid in PROMPI.

Simulation time is typically measured in convective turnovers,

τ c = 2 ℓc/vrms, where ℓc is the height of the convective region and

vrms is the global convective velocity, vrms =

√

〈

v 2
x

〉

− 〈vx〉
2

(see

Appendix C for a description of this notation). Our simulations

typically span 3–4 turnovers, following an initial transient phase of

around 1000 s.

MNRAS 471, 279–300 (2017)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

7
1
/1

/2
7
9
/3

8
7
1
3
7
3
 b

y
 L

iv
e
rp

o
o
l J

o
h
n
 M

o
o
re

s
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 0

6
 S

e
p

te
m

b
e
r 2

0
1
8



286 A. Cristini et al.

Table 1. Summary of simulation properties. Nxyz: total number of zones in

the computational domain (Nx × Ny × Nz), τ sim: simulated physical time

(s), vrms: global rms convective velocity (cm s−1), τ c: convective turnover

time (s), RiB: bulk Richardson number (values in brackets are representative

of the lower convective boundary region), and Ma: Mach number.

lrez mrez hrez vhrez

Nxyz 1283 2563 5123 1,0243

τ sim 3,213 3,062 2,841 986

vrms 3.76 × 106 4.36 × 106 4.34 × 106 3.93 × 106

τ c 554 474 471 513

RiB 29 (370) 21 (259) 20 (251) 23 (299)

Ma 0.0152 0.0176 0.0175 0.0159

Convection is seeded in the hydrodynamic models through ran-

dom perturbations in temperature and density in the same manner

described by Meakin & Arnett (2007b) who also showed that the

subsequent nature of the flow was independent of these seed pertur-

bations. For the vhrez model, convection was not seeded through

perturbations in the 1D stellar model initial conditions, but was

restarted from the hrez model at 980 s, this was done by dupli-

cating each of the cells to double the resolution. Due to limited

computational resources available for this study, the vhrez model

was not simulated for enough convective turnovers in order for the

temporal averaging to be statistically valid. As a result, we only

included this model in part of our detailed analysis.

4 SIM U LATION R ESULTS

A summary of the simulation models is presented in Table 1, which

includes the number of zones, physical time simulated, convective

velocity, convective turnover time, bulk Richardson number, and

convective Mach number.

4.1 The onset of convection and time evolution

The temporal evolution of the global (averaged over the convective

zone) specific kinetic energy for all of the models is presented in

Fig. 5. The first ∼1000 s of evolution are characterized by an initial

transient associated with the onset of convection. By ∼1250 s, all of

the models settle into a quasi-steady state characterized by semireg-

ular pulses in kinetic energy occurring on a time-scale of the order

of a convective turnover time. These pulses are associated with the

formation and eventual breakup of semicoherent, large-scale eddies

or plumes that traverse a good fraction of the convection zone before

dissipating, and is a phenomena that is typical of stellar convective

flow (Meakin & Arnett 2007b; Arnett & Meakin 2011a,b; Viallet

et al. 2013; Arnett et al. 2015).

As discussed in Section 3.3, the evolution of the highest resolution

model,vhrez, begins at ∼1000 s, when it was restarted from model

hrez by simply sampling the underlying flow field on to a higher

resolution mesh. As is typical of turbulent flow, this model relaxes

in approximately one large-eddy crossing time as evidenced by the

re-establishment of the TKE balance discussed below (Section 4.4).

Although these simulations do not sample a large number of

convective turnover times (between ∼2 and ∼6; discussed below),

resolution trends are still apparent. The most prominent trend seen

here is the kinetic energy peak associated with the initial transient,

which increases as the grid is refined. This is not linked to the

initial seed perturbations and is most likely related to the decreased

numerical dissipation at finer zoning.

Figure 5. Temporal evolution of the global specific kinetic energy: thin

dashed – lrez; thick dashed – mrez; black solid – hrez; and red solid

– vhrez. The quasi-steady state begins in each model after approximately

1000 s, and only the lrez model kinetic energy appears to have a depen-

dence on the resolution.

A similar trend can also be seen in the quasi-steady turbulent

state that follows the initial transient. Interestingly, in this case,

a resolution dependence only appears to manifest for the lowest

resolution model, lrez. This has an overall smaller amplitude of

kinetic energy as well as a much smaller variance associated with

the formation and destruction of pulses. These properties can be

naturally attributed to a higher numerical dissipation at a lower

resolution, an issue that we return to throughout the remainder of

the paper.

4.2 Properties of the quasi-steady state

Rms fluctuations in density, pressure, entropy, temperature, and

composition centred around their mean background states are shown

for the hrez model in the left-hand panel of Fig. 6. Fluctuations in

the convective region are small and of a similar magnitude for all

quantities except the composition. Near the convective boundary re-

gions, the relative amplitude of the fluctuations is highest, reaching

values around 1 per cent of the mean background state.

Pressure fluctuations can be grouped into a compressible and

an incompressible components. The former describes the acoustic

nature of pressure fluctuations such as when the flow turns and is

compressed. The latter describes the advective nature of pressure

perturbations due to buoyancy effects. The compressible component

of the pressure fluctuations is proportional to a pseudo-sound term,

ρ0 v′2/p0, shown by the dashed line in the left of Fig. 6. This term

is highest in the convective region and has a magnitude similar to

the square of the Mach number, ∼3 × 10−4.

Horizontally averaged rms velocity components for the hrez

model are shown on the right of Fig. 6. These profiles represent an

average over the quasi-steady-state period of the simulation, which

we estimate to occur over four convective turnover times. The total
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3D simulations of carbon burning 287

Figure 6. Left: horizontally averaged rms fluctuations of composition, density, pressure, temperature, and entropy weighted by their average values. The

dashed curve represents a pseudo-sound term. These fluctuations were time averaged over four convective turnover times of the hrez model. Right: rms radial

(thin dashed), horizontal (thick dashed), and total (solid) velocity components, time averaged over four convective turnover times for the hrez model. Local

maxima in the horizontal velocity indicate the approximate convective boundary locations.

rms velocity reaches a maximum of around 4.8 × 106 cm s−1 both in

the centre of the convective region (x ∼ 1.4 × 109 cm) and also near

the lower convective boundary (x ∼ 0.9 × 109 cm). Contributions

to the total velocity are dominated by the radial velocity over the

central part of the convective region, while close to the convective

boundaries the horizontal velocity (vh =
√

v2
y + v2

z ) is the largest

component. The local maxima in horizontal velocities correspond

to the radial deceleration and eventual turning of the flow near

the convective boundaries. Such features are typical of shallow

convective regions and are similarly reported in simulations of the

oxygen-burning shell by Meakin & Arnett (2007b) and Jones et al.

(2017), see their figs 6 and 11, respectively.

The components of the flow velocity for the hrez model are

illustrated by 2D colour maps in Fig. 7. These snapshots of the

flow were taken at 1480 s into the simulation, where the quasi-

steady state has already developed. Each vertical 2D slice in Fig. 7

is taken at the same horizontal (z) position in the x–y plane, at

z = 0.94 × 109 cm (i.e. in the middle of the domain, see Fig. 3 for

the domain geometry). The left-hand, middle, and right-hand panels

show the x, y, and z components of the velocity, respectively. In

the left-hand panel, strong, buoyant up-flows are shown in shades

of red, while cooler, dense down drafts are shown in shades of

blue.

The convective boundaries are apparent in all the velocity com-

ponents from the sudden drop in magnitude. The lower convec-

tive boundary is clearly distinguishable, but the upper boundary

is more subtle with velocities above the boundary represented by

slightly lighter shades of red and blue. In the middle and right-

hand panels, horizontal velocities are strongest near the convec-

tive boundaries (shown by extended patches of dark red and dark

blue colours), this is indicative of the flow turning as it approaches

the boundary. Gravity mode waves excited by turbulence in the

convective region can be seen in the stable region above, and are

shown by lighter shades of red and blue in the upper part of each

panel.

4.3 Turbulent velocity spectrum

We investigate the degree to which our simulations are capturing

the phenomenology of turbulence, including whether or not they

have developed an inertial sub-range, by looking at velocity spectra

of the modelled flows. Spectra were calculated using a 2D fast

Fourier transform7 of the vertical velocity in a horizontal plane at

the mid-height of the convection zone. The results of this transform

are presented in Fig. 8, where the square of the transform, V̂ 2(k)

is plotted as a function of the wavenumber k. These spectra are

time averaged over several convective turnovers, and a 1D profile is

obtained by binning the 2D transform within the ky–kz plane, where

ky and kz are the wavenumbers in the y- and z-directions, respectively

(ky, kz = 0, 2π, 4π, . . . , 2π(N/2), where N is the number of grid

points in one dimension, i.e. the resolution).

A scaling of (k5/3/N) is applied to the velocity spectrum to com-

pensate for its k−5/3 dependence in the inertial range (Kolmogorov

1941). A plateau in the velocity spectra can be seen in all of the

models. This plateau extends over the largest range in wavenumbers

for the vhrez (cyan) case, 10 � k � 500. Although this plateau

in the spectrum is not a formal proof of the existence of an inertial

range, it supports the fact that our simulations (at least in the hrez

and vhrez cases) resolve appropriately the various ranges of the

problem.

These velocity spectra thus demonstrate that our two highest res-

olution PPM simulations posses essential characteristics of a tur-

bulent flow – an integral scale, an inertial range obeying the k−5/3

power law (at least for a sub-range of wavenumbers), and an effec-

tive Kolmogorov length-scale (represented by the grid scale). In our

two lowest resolution runs, on the other hand, the plateau is either

very short or not present, indicating that models with fewer than

5123 zones are probably not very accurate models of turbulence.

This minimum desired resolution is in reasonable agreement with

7 Using the PYTHON package NUMPY.FFT.FFT2.
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288 A. Cristini et al.

Figure 7. Vertical 2D slice (2D plane defined by z = 0.94 × 109 cm, where z is one of the two horizontal directions in the PROMPI simulation) of velocity

components, 1480 s into the hrez simulation. From left to right vx (vertical component), vy, and vz (horizontal components) are plotted. Reds are positive,

blues are negative, and white represents velocities around zero.

Figure 8. Specific kinetic energy spectrum of the four simulations. Spec-

tra were obtained from a 2D Fourier transform of the vertical velocity (at

the mid-height of the convective region), averaged over several convec-

tive turnovers. The vertical axis corresponds to the square of the Fourier

transform, scaled by a ‘Kolmogorov factor’, k5/3, and a constant (N−1) to

allow easier comparison between resolutions. This scaling highlights the

sub-range of wavenumbers which obey the k−5/3 power law (Kolmogorov

1941). The horizontal axis represents the wavenumber, k. See the text for

more details.

our estimate of the numerical Reynolds number in Section 3.2.1

(Reeff ∼ N 4/3
x ).

4.4 Mean field analysis of kinetic energy

A common method to study turbulent flows is to use the RANS

equations. This reduction of multidimensional data into horizontal

and time-averaged 1D radial profiles allows us to represent the data

obtained from hydrodynamic simulations in the context of 1D stellar

evolution models (Mocák et al. 2014).

We use the RANS framework to calculate the terms of the TKE

equation (details given in Appendix C) and to analyse them. Mo-

mentum diffusion is not included in our simulations as we solve

the inviscid Euler equations within the ILES paradigm. Instead, we

infer TKE dissipation through the truncation errors that arise due

to discretizing these equations (Grinstein, Margolin & Rider 2007),

this provides us with an effective numerical dissipation (ǫk in equa-

tion C4), which we compute from the residual energy in the TKE

budget.

4.4.1 Time-averaged properties of the TKE budget

The profiles of the mean TKE equation terms (equation C4) for

the lrez, hrez, and vhrez models are shown in the left-hand

panels of Fig. 9, with the inferred viscous dissipation shown by a

black dashed line. These profiles are time integrated over multiple

convective turnovers and normalized by the surface area of the

domain. Bar charts of the mean fields integrated over the domain

are shown in the right-hand panels. Comparing the left-hand panels

of Fig. 9 to fig. 8 of Viallet et al. (2013), we see that the energetic

properties of convection during carbon burning are very similar to

oxygen burning.

Time evolution. The Eulerian time derivative of the kinetic energy,

ρDtEk, is small or negligible over the simulation domain, implying

that over the chosen time-scale the model is in a statistically steady

state.

Transport terms. The transport of kinetic energy throughout the

convective region is determined by the two transport terms, the

TKE flux, Fk, and the acoustic flux, Fp (see Viallet et al. 2013, for

a detailed discussion on these terms).

Source terms. Turbulence is driven by two kinetic energy source

terms, Wb and Wp. The rate of work due to buoyancy, Wb (den-

sity fluctuations), is the main source of kinetic energy within the

convective region, while Wp, the rate of work due to compression

(pressure fluctuations or pressure dilatation) is small. In the con-

vective zone, we generally have Wb > 0, as expected since it is

the main driving term. Near the boundaries, however, there is a

region where Wb < 0. These regions are where the flow deceler-

ates (braking layer) as it approaches the boundary, as already found

and discussed for oxygen burning in Meakin & Arnett (2007b) and

Arnett et al. (2015). We note that the top braking layer is more

extended than the bottom one. The top convective boundary width

is also more extended. We come back to this point in Section 4.5.3.

Dissipation. Kinetic energy driving is found to be closely balanced

by viscous dissipation, ǫk; a property consistent with the statis-

tical steady state observed. The time- and horizontally averaged
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3D simulations of carbon burning 289

Figure 9. Left: decomposed terms of the mean kinetic energy equation (equation C4), which have been horizontally averaged, normalized by the domain

surface area, and time averaged over the steady-state period. Time averaging windows are over 2200, 1850 and 1000 s for the lrez (top), hrez (middle), and

vhrez (bottom) models, respectively. Right: bar charts representing the radial integration of the profiles in the left-hand panel. This plot is analogous to the

middle panels of fig. 8 in Viallet et al. (2013).

MNRAS 471, 279–300 (2017)
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Figure 10. Numerical dissipation inferred from the residual TKE for the lower (left) and upper (right) convective boundary regions in the lrez, mrez,

hrez, and vhrez models. The dissipation at each boundary has been normalized by a value at a common position within the convective region near to the

boundary. The hrez and vhrez residual profiles appear to be converging at the upper boundary, suggesting that the representative numerical dissipation here

is physically relevant.

dissipation can be seen to extend roughly uniformly throughout the

convective region, but increases slowly in its amplitude with depth,

tracking the rms velocities. There is almost no dissipation in the

stable layers, where velocity amplitudes are low and turbulence

is absent. Finally, there are notable peaks in dissipation localized

at the convective boundaries. The dependence of these peaks on

resolution is discussed next.

4.4.2 Resolution dependence

We compare models of three different resolutions – the lrez,

hrez, and vhrez models, to determine if any of the physical

results depend on the chosen mesh size. Over the three resolutions,

we find qualitatively similar results but there is significant deviation

at the lower boundary region (∼0.9 × 109 cm). A key question is

whether or not our higher resolution models are able to capture the

physics at boundaries accurately.

At the lower convective boundary (∼0.9 × 109 cm), a peak in

dissipation appears at all resolutions (see dashed line in left-hand

panels of Fig. 9). The peak decreases in amplitude and width with

increasing resolution, indicating that the models are not converged

numerically.

A comparison of the dissipation in this region for all resolutions

is given in the left-hand panel of Fig. 10. Here, the TKE dissipation

is normalized by a value at a common position within the convective

region near to the boundary. This highlights the relative decrease

in this numerical peak with respect to a converged value in the

convective region. A similar plot for the upper boundary is presented

in the right-hand panel of Fig. 10 shows that the dissipation at the

boundary is smooth for both hrez and vhrez models. While in

all cases, the dissipation curves contain some variance due to the

stochastic nature of the flow, the trend with resolution is clear.

4.5 Convective boundary mixing

Entrainment events (similar to entrainment events found for oxygen

burning, see e.g. fig. 23 in Meakin & Arnett 2007b) in the hrez

model can be seen in the left-hand panel of Fig. 11 (see e.g. bottom

left of convective zone where material from below the convective

zone is entrained upwards or top corners of the convective zones

where the material is entrained from the top stable layer). The left-

hand panel shows the average atomic weight fluctuations relative to

their mean, with the velocity field in the (x, y) plane overplotted (the

vertical axis corresponds to the radial/vertical direction, see Fig. 3).

The right-hand panel also shows the velocity magnitude (
√

v2
x + v2

y)

for the same snapshot of the hrez model. In both panels, strong

flows can be seen in the centre of the convective region and shear

flows can be seen over the entire convective region. These shear

flows have the greatest impact at the convective boundaries, where

composition and entropy are mixed between the convective and

radiative regions. Turbulent entrainment within the convective shell

can also be inferred through the radial profile of the buoyancy work,

whereby the positive work near the boundaries (e.g. the magenta

curve of Fig. 9 at ∼0.9 × 109 cm) implies that TKE of overturning

fluid elements near the boundary does work against gravity to draw

stable material into the convective region. This characteristic is

explained in detail and seen in the buoyancy flux profiles of the

oxygen-burning shell in Meakin & Arnett (2007b) (see their section

7.2 and the top panel of fig. 25). This is a very different picture from

the parametrizations that are used to describe convective boundary

mixing in most modern 1D stellar evolution models.

In this section, we start by estimating the position (and its time

evolution) and thickness of the boundaries. We then interpret the

time evolution of the boundary positions in the framework of the

entrainment law. Finally, we compare the upper and lower bound-

aries.

4.5.1 Estimating convective boundary locations

Entrainment at both boundaries pushes the boundary position over

time into the surrounding stable regions. In order to calculate the

boundary entrainment velocities, first the convective boundary posi-

tions must be determined in the simulations. In the 3D simulations,

MNRAS 471, 279–300 (2017)
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3D simulations of carbon burning 291

Figure 11. Left: vertical cross-section of the absolute average atomic weight fluctuations relative to their mean within the convective region. The

colour map represents the logarithm of compositional fluctuations (|A
′
/A0|) relative to the mean. Arrows show the vertical component and one hori-

zontal component of the velocity vector field, (vx, vy) (the vertical axis corresponds to the radial/vertical direction, see Fig. 3). The direction of the

arrows indicates the direction of this vector field in the x–y plane, and their length the magnitude of the velocity vector,
√

v2
x + v2

y , at that grid point.

Right: vertical cross-section of the same velocity vector field plotted as arrows in the left-hand panel. The colour map represents the velocity mag-

nitude in cm s−1. Both snapshots were taken at 2820 s into the hrez simulation. A movie of the velocity magnitude is available on this webpage:

http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-mixing/visualisations/very-high-resolution-movie-of-the-c-shell/view.

the boundary is a 2D surface and is not spherically symmetric as

in 1D stellar models. In order to estimate the radial position of a

convective boundary we first map out a 2D horizontal boundary

surface, rj, k = r(j, k), for j = 1, ny; k = 1, nz, where ny and nz

are the number of grid points in the horizontal y- and z-directions.

We estimate the radial position of the boundary at each horizontal

coordinate to coincide with the position where the average atomic

weight, Ā, is equal to the average between the mean value of Ā

in the convective and the corresponding radiative zones as defined

in equation (A3). The standard deviation of the position, σ r, rep-

resents the amplitude of the fluctuations of the vertical position of

the boundary across the horizontal plane due to the fact the bound-

ary is not a flat surface. Our method is a valid but not a unique

way in which to calculate the boundary position. See Sullivan

et al. (1998), Fedorovich, Conzemius & Mironov (2004), Meakin &

Arnett (2007b), Liu & Ecke (2011), Sullivan & Patton (2011), van

Reeuwijk, Hunt & Jonker (2011), Garcia & Mellado (2014), and

Gastine, Wicht & Aurnou (2015) for a discussion of alternative defi-

nitions. The time evolution of the boundary position and its standard

deviation are plotted in Fig. 13.

4.5.2 Convective boundary structure

While stellar evolution codes describe a convective boundary as a

discontinuity (see the composition profile in the right-hand panel

of Fig. 4, for example), 3D hydrodynamic simulations show a

more complex structure. A boundary layer structure is formed

between the convective and stably stratified regions. This can be

seen from the apparent structure of the mean fields, at ∼0.9 × 109

and ∼1.9 × 109 cm, in the left-hand panels of Fig. 9, which repre-

sent the approximate locations of the lower and upper convective

boundaries, respectively.

The buoyancy in the convective boundary regions is negative,

as seen in the Wb profiles of Fig. 9. In these regions, approaching

fluid elements are decelerated and radial velocities greatly reduced.

As horizontal velocities increase, the plumes turn around and fall

back into the convective region. This is similar to the description by

Arnett et al. (2015, see their fig. 5 and text therein).

4.5.3 Convective boundary thickness estimates

We estimate the thickness of the convective boundaries using the

jump in composition, Ā, between convective and stable regions.

We denote the average composition (averaging removes stochastic

fluctuations in composition) in the, lower stable, convective, and

upper stable regions as, Āl, Āc, and Āu, respectively. We consider the

boundary region to extend between 99 per cent and 101 per cent of

the respective positions coincident with such compositional values.

For each boundary, we signify such values by the appendage of a

subscript − (99 per cent) or + (101 per cent) to the composition of

each region. Explicitly, the lower boundary thickness is defined as,

δrl = r
(

Āc+

)

− r
(

Āl−

)

. (14)

The upper boundary thickness is similarly defined as,

δru = r
(

Āu+

)

− r
(

Āc−

)

. (15)

In addition, we also considered defining the boundary thickness us-

ing gradients in composition and entropy, and the jump in entropy

at the boundary. We found that these other methods gave quanti-

tatively similar results. In Fig. 12, we illustrate the estimation of

the boundary thickness using equations (14) and (15) for the final

time-step of each simulation. The radius of each profile has been

shifted, such that the boundary position, r (see Section 4.5.1), of

each model coincides with the boundary position of the vhrez

model. With such a shift, it is easier to assess the dependence of the

boundary shape on resolution.

The extents of the convective boundaries are marked by filled

squares for each simulation. Filled circles represent the individual
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Figure 12. Radial compositional profiles at the lower (left) and upper (right) convective boundary regions for the last time-step of each model. The radius

of each profile is shifted such that the boundary position, r (see Section 4.5.1), coincides with the boundary position of the vhrez model. In this sense, it

is easier to assess the convergence of each model’s representation of the boundary at the final time-step. Individual mesh points are denoted by filled circles.

Approximate boundary extent (width) is indicated by the distance between two filled squares for each resolution. The initial composition profile calculated

using GENEC is shown in black (for a qualitative comparison only). See the corresponding text (Section 4.5.3) for details of the definition of the boundary width.

Table 2. Table summarizing bulk and boundary region properties for each

model. vrms – global rms convective velocity (cm s−1); ℓc – convective region

height (cm); ve – entrainment velocity (cm s−1); δr – boundary region width

(cm); δr/Hp – ratio of the boundary region width to the average pressure

scaleheight across the boundary; τ b – boundary entrainment time (s); and

RiB – bulk Richardson number. Values in brackets correspond to the lower

boundary.

lrez mrez hrez vhrez

vrms 3.76 4.36 4.34 3.93

(106)

ℓc 1.08 1.04 1.03 1.09

(109)

ve 1.78 (−0.44) 2.01 (−0.39) 2.15 (−0.30) 1.59 (−0.46)

(104)

δr 13.2 (10.3) 12.5 (5.1) 9.9 (3.3) 9.6 (2.9)

(107)

δr/Hp 0.41 (0.36) 0.36 (0.17) 0.29 (0.11) 0.28 (0.10)

τ b 7.4 (23.4) 6.2 (13.1) 4.6 (11.0) 6.0 (6.3)

(103)

RiB 29 (370) 21 (259) 20 (251) 23 (299)

mesh points, indicating the resolution of each simulation. Note that,

the composition profile labelled as model GENEC is from the 1D

stellar model, and was used as part of the initial conditions for all

of the 3D models, so serves only as a qualitative comparison. The

exact thickness of each boundary is shown in Table 2, along with

their fraction of the local pressure scaleheight.

In Fig. 12 (right-hand panel), it can be seen that the composition

gradient at the top boundary is nearly converged between all resolu-

tions and varies only mildly between the lowest resolution case and

the other models. The composition gradient at the lower boundary

(left-hand panel), on the other hand, varies significantly between the

lrez and hrez models, while between the hrez and vhrez, the

boundary shape appears to have nearly converged although is still

narrowing slightly. These trends are confirmed by the quantitative

estimates of the boundary widths presented in Table 2.

The thickness determined from the abundance gradients is larger

than the standard deviation, σ r, of the boundary location (corre-

sponding to the mid-points of the abundance gradients plotted in

Fig. 12) shown as shaded areas in Fig. 13. This is expected since

the fluctuations of the boundary location do not take into account its

thickness or width, but only the location of its centre (mid-point).

These fluctuations of the boundary location can be compared to

fluctuations in the height of the ocean surface due to the pres-

ence of waves. The fact that the width determined from the abun-

dance gradients (given in Table 2) is significantly larger means that

there is mixing across the boundary. A promising candidate for this

type of mixing is the Kelvin–Helmholtz instability which would

give rise to the shear motions seen in Fig. 14. This figure shows

sequential slices of the flow velocity across the left section of the

upper convective boundary region. Such shear mixing is induced

by plumes rising from the bottom of the convective region and

turning around at the boundary (see also the shear layer in fig.

5 of Arnett et al. 2015). Mixing also occurs through plume im-

pingement or penetration with the boundary. Some mixing may

also occur through the presence of gravity waves which propagate

through the stable region. It is not expected that the upper bound-

ary gradient will steepen, as this would support more violent sur-

face waves whose non-linear dissipation would tend to broaden the

gradient, resulting in a negative feedback loop between these two

processes.
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3D simulations of carbon burning 293

Figure 13. Time evolution of the mean radial position of the convective boundaries, averaged over the horizontal plane for all four resolutions. Shaded

envelopes are twice the standard deviation from the boundary mean location. The convective turnover time in these simulations is of the order of 1000 s. Top

panel: upper convective boundary region. For increasing resolution, the average standard deviation, σ r, in the estimated boundary position are the following

percentages of the local pressure scaleheight: 3.3 per cent; 3.8 per cent; 4.3 per cent; and 4.5 per cent. Bottom panel: lower convective boundary region.

For increasing resolution, the average standard deviation in the estimated boundary position are the following percentages of the local pressure scaleheight:

0.8 per cent; 0.7 per cent; 0.4 per cent; and 0.6 per cent. These shaded areas represent the variation in the boundary height due to the fact that the boundary is

not a flat surface. This can be compared to the surface of the ocean not being flat due to the presence of waves.

It is important to remember that the boundary widths given in

Table 2 are only estimates. The key finding are (1) that the lower

boundary has a narrower width compared to the upper, and (2) the

widths are relatively well converged between the hrez and vhrez

models.

4.5.4 Convective boundary evolution and entrainment velocities

The variation in time of the average surface position, r , of both

boundaries is shown for all models in Fig. 13. Positions are shown

as solid lines and twice the standard deviation as the surrounding

shaded envelopes. Following the initial transient (>1000 s), a quasi-

steady expansion of the convective shell proceeds. We obtained the

entrainment velocities, ve, given in Table 2 using a linear fit to the

time evolution of the boundary positions during the quasi-steady

phase. These velocities are very high. If one multiplies them by

the lifetime of carbon shell burning (of the order of 10 yr), the

convective boundaries would move by more than 1010 cm, which

would lead to dramatic consequences for the evolution of the star.

Note, though, that the driving luminosity of the shell was boosted

by a factor of 1000. We will come back to this point in Section 4.6.

4.5.5 The equilibrium entrainment regime

In the equilibrium entrainment regime (Fedorovich et al. 2004;

Garcia & Mellado 2014), the time-scale for the boundary migration,

τ b, is comparable to or larger than the turbulent transit time-scale, τ c

(Section 3.3). Therefore, in this regime, the entrainment process is

sampling the entire spectrum of turbulent motions over the inertial

range rather than being sensitive to individual turbulent elements,

such as in strong, individual outlier’s events. This simplifies the

development of mixing models within this regime. The boundary

entrainment velocity ve = d r/dt is defined in terms of the mean

boundary position r(t). We define the boundary mixing time-scale as

τ b = δr/|ve|, where δr is the boundary thickness (Table 2), which we

define in Section 4.5.3. We find τ b/τ c ratios for the upper convective

boundary of 13.4, 13.1, 9.8, and 11.7 for the lrez, mrez, hrez,

and vhrez models, respectively, placing all of these boundaries

firmly in the equilibrium regime.

4.5.6 The entrainment law

The time rate of change of the boundary position due to turbu-

lent entrainment (the entrainment velocity), ve, has been found to

scale as a power of the bulk Richardson number for a wide range

of conditions (e.g. Garcia & Mellado 2014). This relationship is

often referred to as an entrainment law in the meteorological and

atmospheric and is typically written as:

ve

vrms

= A Ri−n
B . (16)

Many LES (e.g. Deardorff 1980) and laboratory (e.g. Chemel,

Staquet & Chollet 2010) studies have found similar values for the

coefficient, A, typically between 0.2 and 0.25, although experimen-

tal measures have been more uncertain.

The exponent, n, is often found to be close to unity for convec-

tively driven turbulence (e.g. Fernando 1991; Stevens & Lenschow

2001), a result that follows from basic energetic considerations. On
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Figure 14. Sequential vertical cross-sections in the x–y plane of the velocity magnitude,
√

v2
x + v2

y + v2
z , across the left section of the upper convective

boundary for the vhrez simulation. Snapshots are taken at 1565 s (upper left), 1570 s (upper right), 1575 s (lower left), and 1580 s (lower right). The

colour bar presents the values of the velocity magnitude in units of cm s−1. Each panel reveals shear mixing occurring across the boundary interface. The

Kelvin–Helmholtz instability is a promising candidate for generating this type of mixing.

the other hand, in a recent DNS study, Jonker et al. (2013) showed

that A ≈ 0.35 and n = 1/2 for shear-driven entrainment.

We compare the bulk Richardson number (equation A5) of our

3D simulations to the initial conditions from the 1D stellar model

(Cristini et al. 2016) and 3D oxygen-burning simulations from

Meakin & Arnett (2007b). From the 1D, 15 M⊙ stellar model of

Cristini et al. (2016) used as initial conditions in these simula-

tions, the bulk Richardson numbers of the carbon-burning shell are

Ri u
B ∼ 1440 and Ri l

B ∼ 2.0 × 104 at the upper and lower convec-

tive boundaries, respectively. While, for our 3D vhrez model (see

Table 2), we found Ri u
B ∼ 23 and Ri l

B ∼ 299. The lower values we

obtain in 3D are mainly due to the fact that we boosted the lumi-

nosity by a factor of 1000. This is further discussed in Section 4.6.

The entrainment speed (normalized by the rms velocity) is plotted

as a function of the bulk Richardson number in Fig. 15. Red points

represent the data obtained in the study by Meakin & Arnett (2007b),

the solid red line is a best-fitting power law to the data following

a linear regression, and the red dashed lines show the error in the

computed slope. Blue opaque points represent the values obtained

in the hrez and vhrez models and blue transparent points are the

values obtained in the lrez and mrez models. We obtain a best-

fitting power law to the hrez and vhrez data and the extremes of

their error bars, shown by the solid blue line and dashed blue lines,

respectively. The corresponding intercept and slope of this best

fitting denote the entrainment coefficient, A = 0.03 (±0.01), and

entrainment exponent, n = 0.62 (+0.09/ −0.15), respectively. The

value we obtain for the entrainment exponent, n, falls between the

two scaling relations (1/2 ≤ n ≤ 1). Our value for the coefficient,

A, however, differs from all of the values found in the literature.

Figure 15. Logarithm of the entrainment speed for high Péclet number sim-

ulations, normalized by the rms turbulent velocity versus the bulk Richard-

son number. Red points represent data obtained in the study by Meakin &

Arnett (2007b) and blue points represent data obtained in this study, trans-

parent points represent the values for the lrez and mrez models, which

are not included in best-fitting power law shown by the blue solid line. The

blue dashed lines show the best fitting to the extremes of the error bars of

the hrez and vhrez models. The red solid line is the best-fitting power

law from a linear regression of the oxygen shell data and the red dashed

lines show the error in the computed slope.
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A larger data set is desired with which to explore in more detail

the parameter space. Interestingly, the bulk Richardson numbers

are similar between the carbon and oxygen shell models, and in

particular, the lower convective boundaries both have higher values

than the corresponding upper boundaries. The difference in the best-

fitting values of A indicates that the oxygen shell is more efficient

in converting kinetic energy into mixing. The difference in the best-

fitting values of n indicates that there may be a second parameter

besides RiB that is varying between the top and bottom of the

convective shells, and in different ways, between the carbon and

oxygen shell models. Finally, it must be reiterated that the ambiguity

associated with calculating RiB is likely to account for some of the

discrepancy.

4.5.7 Comparison of upper and lower convective boundary

properties

Summarizing the boundary properties determined so far for the

hrez model (see Table 2), the upper boundary region has a typical

width of 9.9 × 107 cm, entrainment speed of 2.2 × 104 cm s−1, and

bulk Richardson number of 20. The lower boundary region typically

has a width of 3.3 × 107 cm, entrainment speed of 3 × 103 cm s−1,

and bulk Richardson number of 251. We thus have a consistent

picture of the lower boundary being narrower, having a slower

entrainment velocity and being stiffer (higher RiB) compared to the

upper boundary by a factor of about 3, 7, and 13, respectively.

4.6 Comparing convective boundary mixing between 1D and

3D models

Upon comparing our results to the 1D GENEC stellar evolution mod-

els, we find that our boundary widths are much larger and the

boundary structures are very different from those calculated using

strict Ledoux or Schwarzschild boundaries. The results of this and

similar 3D hydrodynamic studies (Meakin & Arnett 2007b; Viallet

et al. 2013; Woodward, Herwig & Lin 2015; Arnett et al. 2015;

Couch et al. 2015; Jones et al. 2017) call for improved convective

boundary mixing prescriptions in 1D stellar evolution models.

An approximate relation can be obtained between RiB and the lu-

minosity, allowing the determination of convective boundary stiff-

ness in 1D stellar models. Considering equation 16 (with n = 1),

the relation vrms ∝ L1/3 (assuming ǫnuc ∼ v3
rms/ℓ; Kolmogorov 1941,

and L =
∫

ǫnuc dm) and that the entrainment rate scales roughly lin-

early with the luminosity of the shell over the quasi-steady state

(Jones et al. 2017), which implies that ve ∝ L, we obtain that RiB

∝ L−2/3. Interestingly, we find the same dependence when start-

ing from the formula for RiB (given in equation A5), considering

that the buoyancy jump remains constant (which is reasonable for

a given initial stratification) and that vrms ∝ L1/3. Using the relation

RiB ∝ L−2/3, the boost of a factor of 1000 in the luminosity of our

3D models thus implies a reduction by a factor of 100 in RiB. This

brings the values of the bulk Richardson number between our 3D

and 1D models of the carbon shell into a reasonable agreement (see

Section 4.5.6). A complication involves calculating the buoyancy

jump needed for the bulk Richardson number since it is not pre-

cisely defined in a complex, stratified situation like a stellar interior

– the length-scale used for this integration is therefore somewhat

arbitrary.

Another important point is that we confirm with the 3D simula-

tions that the lower boundary is stiffer than the upper boundary, by

a factor of about 13 in terms of RiB. The fact that the entrainment

velocity at the lower boundary is a factor of about 7 smaller than

at the upper boundary is partly explained by the fact that the hori-

zontal velocities at the lower boundary are higher than at the upper

boundary (see Fig. 6).

Theoretical relations like the entrainment law will be needed to

determine entrainment velocities for different burning stages and

their various phases. This can be achieved by first estimating the

bulk Richardson number of a given convective boundary from the

luminosity, as described above. Then, one can approximate a turbu-

lent rms velocity using the velocity calculated from MLT or a sim-

ilar method. Finally, equation (16) can be used with suitable values

for the entrainment coefficient and exponent to estimate the entrain-

ment velocity of the mentioned convective boundary (e.g. Deardorff

1980; Fernando 1991; Stevens & Lenschow 2001; Meakin & Arnett

2007b; Chemel et al. 2010).

5 C O M PA R I S O N TO OT H E R S I M U L AT I O N S

As found by Cristini et al. (2016) using the same 1D stellar model

used for these hydrodynamic simulations, the lower convective

boundary is stiffer than the upper boundary as determined by the

bulk Richardson number. Our higher resolution 3D models pro-

duce comparable results for the bulk Richardson number and for

the hrez model, we obtain values of 20 and 251 for the upper and

lower boundaries, respectively.

Meakin & Arnett (2007b) simulated the oxygen shell of a 23 M⊙
star in spherical coordinates, also using the PROMPI code. The driving

of the carbon shell we simulate is similar to their oxygen shell, owing

to the fact that we boosted the luminosity. We find that the profiles of

the velocity components are comparable between the two models.

As shown by our Fig. 15 and their fig. 26, we find similar estimates

of the bulk Richardson numbers, while the values of the constants

A and n (from equation 16) differ, this is somewhat expected as the

oxygen shell engulfs the neon-burning shell and complex multiple

shell burning proceeds.

We obtain a TKE budget that is in agreement with that of spherical

simulations of the oxygen shell in a 23 M⊙ star by Viallet et al.

(2013). In such an energy budget, we see a statistically steady state

of turbulence over four convective turnovers. Predominantly, this

is driven from the bottom of the shell by a positive rate of work

due to buoyancy and dissipated at the grid scale by a numerical

viscosity.

In recent full 4π simulations of the oxygen-burning shell in a

25 M⊙ star, Jones et al. (2017) find a 2σ fluctuation in their calcu-

lation of the convective boundary of 17 per cent of the local pressure

scaleheight. This is larger than the horizontal fluctuation in our es-

timation of the upper boundary of the carbon shell; a 2σ fluctuation

of 4.3 per cent of the local pressure scaleheight (Fig. 13). This dif-

ference could be due to the maximum tangential velocity gradient

method that Jones et al. (2017) use to estimate the boundary posi-

tions, which differs from the method described in Section 4.5.1. We

find comparable magnitudes of the velocity components (see our

Fig. 6, and their fig. 11), and also similar Mach numbers for the flow

(see our Table 1, and their table 1). This could be in part due to the

fact that our boosted energy generation rate (∼3 × 1012 erg g−1 s−1)

is comparable to the rate used in their PPMSTAR (Woodward et al.

2015) simulations. The relative magnitude of the radial velocity

component in Fig. 6 is higher than that of Jones et al. (2017), and

our horizontal velocity does not possess the same symmetry as

their tangential velocity. The latter could be due to the difference in

geometries between the two simulations. Jones et al. (2017) also ob-

serve entrainment at the upper convective boundary of their oxygen

shell. Their velocity of the upper boundary due to entrainment is
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lower than the entrainment velocity we estimate by over an order of

magnitude. One reason for this difference could be that the oxygen

shell boundary is much stiffer than the carbon shell boundary, due

to a smaller jump in buoyancy over the boundary (rms turbulent

velocities are similar). We determined this difference in boundary

stability through the difference in the peak squared Brunt–Väisälä

frequencies. The value for the upper boundary of the carbon shell

(∼0.05 rad s−2) is an order of magnitude smaller than that of the

oxygen shell. This could explain the order of magnitude difference

in entrainment velocity assuming that the oxygen shell simulations

also follow an entrainment law of the form of equation (16).

6 C O N C L U S I O N S

3D hydrodynamic simulations that represent the second carbon shell

of a 15 M⊙ star have been performed, using the PROMPI code. The

initial conditions used were finely mapped profiles of the carbon

shell structure from a 15 M⊙, solar metallicity, non-rotating stellar

model calculated by Cristini et al. (2016) using the GENEC code.

The luminosity of the 3D model was provided by a parametrized

nuclear energy generation rate, energy losses were also accounted

for through escaping neutrinos, using a specific neutrino produc-

tion rate, although their effect was negligible. The luminosity of

the model was boosted by a factor of 1000 in order to ease the

time needed to establish the turbulent velocity field, as discussed in

Section 3.2. The computational domain utilized a plane-parallel

geometry within a Cartesian coordinate system and used a

parametrized gravitational acceleration.

We tested the dependence of our set-up on the domain mesh size

by computing models of four different resolutions: 1283, 2563, 5123,

and 10243. At these resolutions, approximate numerical Reynolds

number of 650, 1600, 4000, and 104, respectively are achieved in

the convective zone (using equation 11). This means that with the

exception of the lrez model, all of the models reach the turbu-

lent regime (Reeff � 1000). While a resolution of 5123 appears to

produce a converged result at the upper boundary; the stiffer, lower

boundary continues to change up to our highest resolution model.

An even higher resolution run is thus planned.

We observed entrainment of material at both convective bound-

aries for all of the models considered. This entrainment over the

quasi-steady turbulent state is associated with an almost constant

velocity, and the corresponding time-scale is greater than the time-

scale for the largest fluid elements to transit the convective region,

asserting that convective boundary mixing in these models occurs

within the equilibrium entrainment regime. The average entrain-

ment velocities over the respective boundaries are 2.2 × 104 and

−0.3 × 104 cm s−1 for the upper and lower boundaries, respectively.

We also found that the entrainment velocity scales with the stiff-

ness (bulk Richardson number) of the convective boundaries. This

scaling follows the entrainment law with entrainment coefficient

and exponent, A = 0.03 (±0.01) and n = 0.62 (+0.09/ −0.15), re-

spectively. These constants were obtained from only two convective

boundaries. Additional simulations using different initial conditions

should help explore the parameter space of the entrainment law and

whether or not the parameters we derived vary significantly from

one burning stage to the other. Furthermore, the dependence on the

Péclet number needs to be further explored before our results ob-

tained in the neutrino-cooled advanced phases can be applied to the

early phases (hydrogen and helium burning) during which thermal

effects are important, at least at the small scales (see discussion

in Viallet et al. 2015). We also estimated the boundary widths and

found these to be roughly 30 per cent and 10 per cent of the local

pressure scaleheight for the upper and lower convective boundaries,

respectively. While these widths are only estimates, they confirm

that the lower boundary is narrower than the upper boundary.

Although more 3D simulations of all burning stages are needed

to fully characterize convective boundary mixing, we can already

compare our results to those of previous studies as well as the 1D

input stellar model and relate them via measures of the turbulent

driving and boundary stiffness. For this purpose, we investigated

how entrainment and turbulent velocities, the driving luminosity

and boundary stiffness (measured using the bulk Richardson num-

ber) relate to each other in Section 4.6. Considering these relations

enabled us to reconcile the convective boundary properties of the

carbon shell estimated from the initial 1D stellar evolution model

to the properties of boundaries in the 3D simulations presented here

(despite the artificial increase in luminosity for the 3D simulations).

Referring to the similarities between carbon and oxygen shell sim-

ulations presented in Section 5, a coherent picture seems to emerge

from all existing simulations related to the advanced burning stages

in massive stars when considering the relations between the above

quantities.

This is promising for the long-term goal of developing a con-

vective boundary mixing prescription for 1D models which is ap-

plicable to all (or many) stages of the evolution of stars (and not

only to the specific conditions studied in 3D simulations). The lu-

minosity (driving convection) and the bulk Richardson number (a

measure of the boundary stiffness) will be key quantities for such

new prescriptions (also see Arnett et al. 2015).

The goal of 1D stellar evolution models is to capture the long-

term (secular) evolution of the convective zone and of its boundaries,

while 3D hydrodynamic simulations probe the short-term (dynam-

ical) evolution. Keeping this in mind, the key points to take from

this and previous 3D hydrodynamic studies for the development of

new prescriptions in 1D stellar evolution codes are the following:

(i) Entrainment of the boundary and mixing across it occurs both

at the top and bottom boundaries. Thus, 1D stellar evolution models

should include convective boundary mixing at both boundaries.

Furthermore, the boundary shape is not a discontinuity in the 3D

hydrodynamic simulations but a smooth function of radius, sigmoid-

like, a feature that should also be incorporated in 1D models.

(ii) At the lower boundary, which is stiffer, the entrainment is

slower and the boundary width is narrower. This confirms the de-

pendence of entrainment and mixing on the stiffness of the bound-

ary.

(iii) Since the boundary stiffness varies both in time and with

the convective boundary considered, a single constant parameter

is probably not going to correctly represent the dependence of the

mixing on the instantaneous convective boundary properties. As

discussed above, we suggest the use of the bulk Richardson number

in new prescriptions to include this dependence.
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A P P E N D I X A : 1 D ST E L L A R C O N V E C T I O N

PA R A M E T E R S

To determine averages over the convective region, we used an rms

mass average. The mass average of a quantity A is defined as:

Aavg =

√

1

m2 − m1

∫ m2

m1

A2(m) dm, (A1)

where m1 and m2 are the mass at the lower and upper convective

boundaries, respectively.

The bulk Richardson number is the ratio of the boundary stabiliz-

ing potential to the kinetic energy of turbulent motions (within the

convective region). It characterizes the boundary stiffness, and is a

function of the Brunt–Väisälä frequency or buoyancy frequency, N,

which is defined as:

N2 = −g

(

∂lnρ

∂r

∣

∣

∣

∣

e

−
∂lnρ

∂r

∣

∣

∣

∣

s

)

, (A2)

where g is the gravitational acceleration, ρ is the density, and sub-

scripts e and s represent the fluid element and its surroundings,

respectively.

In order to study the properties of the boundary regions, we first

need a definition of the boundary location, rc. Meakin & Arnett

(2007b) use the maximum gradient method on the composition

to determine the location of convective boundaries in the oxygen

shell of a 23 M⊙ model. In a similar manner, we approximate the

location of the top (bottom) boundary as the vertical coordinate

having an average atomic mass, A, equal to the average between

the convective zone and top (bottom) radiative zone,

Ath =
Aconv + Arad

2
, (A3)

where Aconv and Arad are the averages of A in the convective and

relevant stable/radiative regions, respectively.

The buoyancy jump over a convective boundary region can be

estimated by integrating the square of the buoyancy frequency over

a suitable distance (	r) either side of the boundary centre, rc,

	B =

rc+	r
∫

rc−	r

N2dr. (A4)

The integration distance 	r is not well-defined theoretically but

it should be large enough to capture the dynamics of the boundary

region and the distance over which fluid elements are decelerated.

As mentioned above, the bulk Richardson number is the ratio of

the boundary stabilization potential (which includes the buoyancy

jump) to the kinetic energy due to turbulent motions (within the

convective region),

RiB =
	Bℓ

vrms
2
, (A5)

where ℓ is the integral length-scale which represents the size of the

largest fluid elements. The integral length-scale is often taken to be

the horizontal correlation length. Meakin & Arnett (2007b) show

that the horizontal correlation length-scale and pressure scaleheight

are similar to within a factor ∼3. So for our analysis, we use the

pressure scaleheight close to the boundary. The rms velocity, vrms,

represents the velocity of the largest fluid elements carrying most

of the energy, which for the 1D simulations we approximate as the

convective velocity,

vc =

(

Fc

ρ

)
1
3

, (A6)

where Fc is the convective flux.

In estimating the Mach number, we determine the sound speed,

cs, using the Helmholtz EOS (Timmes & Arnett 1999; Timmes &

Swesty 2000),

Ma =
vc

cs

. (A7)

The Péclet number (Pe) is defined as the ratio of the time-scale

for advective transport to the time-scale for transport through diffu-

sion. In the stellar case, thermal diffusion dominates over molecular

diffusion. For the deep interior heat transfer plays a minor role, so

typically Pe >>1. We determine the Péclet number using the fol-

lowing formula,

Pe =
3Dmlt

χ
, (A8)

where Dmlt is the diffusion coefficient calculated using MLT,

Dmlt = vmltℓmlt/3, vmlt and ℓmlt are the mixing length velocity and

mixing length parameter. χ is the thermal diffusivity, defined as,

χ =
16σ T 3

3κ ρ2 cp

(A9)

where σ is the Stefan–Boltzmann constant, T the temperature, κ

the Rosseland mean opacity, and cp the specific heat capacity at

constant pressure.

The Damköhler number (Da) is defined as the ratio of the ad-

vective time-scale to the nuclear reaction time-scale, generally this

is small in deep convective regions as the time-scale for nuclear

reactions is long, but during the advanced stages of massive star

evolution the two time-scales can become comparable. We deter-

mine the Damköhler number using the following formula,

Da =
tcon

tnuc

=

(

2ℓc

vc

) (

qXi

ǫnuc

)−1

, (A10)

where tcon is the convective turnover time and tnuc is the relevant

nuclear reaction time-scale. ℓc is the height of the convective zone,

q is the specific energy released for the dominating reactions, Xi

is the mass abundance of the interacting particles, and ǫnuc is the

nuclear energy generation rate.

The majority of these variables are presented in Table A1 for

most of the convective boundaries shown in Fig. 1.
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Table A1. Estimates of the convective velocity (cm s−1), Bulk Richardson number, Mach number, Péclet number, and Damköhler

number of different times during core- and shell-burning phases of a 15 M⊙ stellar model. Bulk Richardson numbers are boundary

values, brackets indicate values at the lower boundary, all other values were mass averaged over the convective region. Péclet numbers

are order of magnitude estimates.

Phase vc (cm s−1) RiB Ma Pe Da

H Core Start 6.9 × 104 1.8 × 102 9.3 × 10−4 ∼103 3.8 × 10−8

H Core End 9.7 × 104 1.1 × 102 1.5 × 10−3 ∼103 7.2 × 10−7

He Core Start 4.7 × 104 1.2 × 103 4.3 × 10−4 ∼104 1.8 × 10−7

He Core Max 5.9 × 104 4.0 × 102 5.0 × 10−4 ∼105 3.5 × 10−6

He Core End 5.9 × 104 3.8 × 102 5.1 × 10−4 ∼105 3.0 × 10−6

C Core Start 6.9 × 104 7.2 × 103 3.0 × 10−4 ∼106 3.4 × 10−6

C Core Max 5.6 × 104 1.2 × 104 2.4 × 10−4 ∼107 1.2 × 10−5

C Core End 5.8 × 104 3.9 × 102 2.4 × 10−4 ∼107 1.8 × 10−5

Ne Core Start 1.5 × 106 82 3.9 × 10−3 ∼1010 3.3 × 10−3

Ne Core Max 6.4 × 105 3.6 × 102 1.9 × 10−3 ∼1010 5.5 × 10−3

Ne Core End 4.1 × 105 62 1.1 × 10−3 ∼1010 2.6 × 10−3

O Core Start 8.8 × 105 2.4 × 102 2.2 × 10−3 ∼1010 6.3 × 10−4

O Core Max 7.9 × 105 8.5 × 104 2.0 × 10−3 ∼1010 2.4 × 10−3

O Core End 7.5 × 105 27 1.8 × 10−3 ∼1010 2.0 × 10−3

He Shell Start 1.4 × 105 46(20) 8.9 × 10−4 ∼106 5.7 × 10−8

He Shell End 1.3 × 105 14(1.8 × 103) 9.1 × 10−4 ∼106 1.0 × 10−7

C Shell Start 3.6 × 105 4.2 × 102(6.0 × 103) 1.3 × 10−3 ∼108 1.3 × 10−4

C Shell ICa 2.9 × 105 6.9 × 102(1.5 × 104) 1.2 × 10−3 ∼108 2.0 × 10−4

C Shell End 1.6 × 105 59(6.5 × 104) 5.7 × 10−4 ∼107 1.3 × 10−4

O Shell Start 1.5 × 105 3.7 × 104(4.0 × 104) 3.4 × 10−4 ∼1010 2.7 × 10−4

O Shell End 5.7 × 105 1.2 × 102(3.4 × 104) 1.3 × 10−3 ∼1010 1.4 × 10−3

a Properties of the 1D model used as initial conditions for the 3D simulations.

Table A2. Constants used in the fitting functions (equation B1) for the five sections of the entropy, Ā and Z̄ profiles. Subscripts 1,2, and 3 refer to the lower

stable, convective, and upper stable sections, respectively. Subscripts l and u refer to the lower and upper convective boundary sections, respectively.

α1 β1 θ l φl ηl α2 β2 θu φu ηu α3 β3

s 1.65 × 108 0.24 2.81 × 108 3.43 × 108 − 0.5 3.43 × 108 0 3.43 × 108 3.56 × 108 − 0.5 3.56 × 108 0.08

Ā 18.17 0 18.17 16.19 0.5 16.19 0 16.19 14.38 0.5 14.38 0

Z̄ 9.07 0 9.07 8.08 0.5 8.08 0 8.08 7.18 0.5 7.18 0

APPEN D IX B: STELLAR MODEL PROFIL E

FITTING

The entropy (s), average atomic mass (Ā), and average atomic num-

ber (Z̄) were remapped by considering five distinct sections of the

domain. The lower stable region (below the lower convective bound-

ary), the convective region, and the upper stable region (above the

upper boundary) were fitted linearly in the form α + β x, where α

and β are constants, and x is the radius on a grid point. The two

remaining sections are the upper and lower convective boundaries,

these were fitted using sigmoid functions, fsig, of the form,

fsig = θ +
φ − θ

1 + e η z
, (B1)

where θ , φ, and η are constants, and z is a normalized grid in-

dex. The fitting constants for the three variables are presented in

Table A2, the subscripts for each constant represent the section of

the domain for which the fit refers to. Subscripts 1, 2, and 3 denote

the lower stable, convective, and upper stable sections, respectively.

Subscripts l and u refer to the lower and upper convective boundary

sections, respectively.

A P P E N D I X C : R A N S T E R M I N O L O G Y A N D

T H E T U R BU L E N T K I N E T I C E N E R G Y

E QUAT I O N

In the RANS framework, variables are split into mean and fluctu-

ating components. The horizontally averaged mean is denoted by

angled brackets and defined as,

〈a〉 =
1

	A

∫

	A

a dA, (C1)

where dA = dy dz and 	A = 	y	z is the area of the computational

domain. The fluctuating component, a′, is obtained by subtracting

the mean of the variable from the variable: a′ = a − 〈a〉.

In order to statistically sample, the quasi-steady state we perform

temporal averaging over several convective turnovers, denoted by

an overbar and defined as,

a =
1

	t

∫ t2

t1

a(t) dt, (C2)

for an averaging window 	t = t2 − t1.

The Eulerian equation of TKE can be written as (equation A12

of Meakin & Arnett 2007b):

∂t (ρEk) + ∇ · (ρEkv) = −v · ∇p + ρ v · g (C3)

MNRAS 471, 279–300 (2017)
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where v is the velocity and Ek = 1
2
(v · v) is the specific kinetic

energy.

Applying horizontal and temporal averaging to equation (C3)

yields the mean TKE equation, which can be written as,

〈ρDtEk〉 = −∇ ·
〈

Fp + Fk

〉

+
〈

Wp

〉

+ 〈Wb〉 − ǫk, (C4)

where Dt = ∂t + ∇ · v is the material derivative,

Fp = p′
v

′ is the turbulent pressure flux,

Fk = ρEkv
′ is the TKE flux,

Wp = p′
∇ · v

′ is the pressure dilatation,

Wb = ρ ′ g · v
′ is the work due to buoyancy and

ǫk is the numerical dissipation of kinetic energy.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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