97 research outputs found

    Practical aspects of real-time reaction monitoring using multi-nuclear high resolution FlowNMR spectroscopy

    Get PDF
    FlowNMR spectroscopy is an excellent technique for non-invasive real-time reaction monitoring under relevant conditions that avoids many of the limitations that bedevil other reaction monitoring techniques.</p

    Probing the viability of oxo-coupling pathways in iridium-catalyzed oxygen evolution

    Get PDF
    [Image: see text] A series of Cp*Ir(III) dimers have been synthesized to elucidate the mechanistic viability of radical oxo-coupling pathways in iridium-catalyzed O(2) evolution. The oxidative stability of the precursors toward nanoparticle formation and their oxygen evolution activity have been investigated and compared to suitable monomeric analogues. We found that precursors bearing monodentate NHC ligands degraded to form nanoparticles (NPs), and accordingly their O(2) evolution rates were not significantly influenced by their nuclearity or distance between the two metals in the dimeric precursors. A doubly chelating bis-pyridine–pyrazolide ligand provided an oxidation-resistant ligand framework that allowed a more meaningful comparison of catalytic performance of dimers with their corresponding monomers. With sodium periodate (NaIO(4)) as the oxidant, the dimers provided significantly lower O(2) evolution rates per [Ir] than the monomer, suggesting a negative interaction instead of cooperativity in the catalytic cycle. Electrochemical analysis of the dimers further substantiates the notion that no radical oxyl-coupling pathways are accessible. We thus conclude that the alternative path, nucleophilic attack of water on high-valent Ir-oxo species, may be the preferred mechanistic pathway of water oxidation with these catalysts, and bimolecular oxo-coupling is not a valid mechanistic alternative as in the related ruthenium chemistry, at least in the present system

    Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water

    Get PDF
    Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr3-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm−2 at 1.23 VRHE. We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation

    Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes

    Full text link

    Hydrogen-transfer catalysis with Cp*Ir<sup>III</sup> complexes:The influence of the ancillary ligands

    Get PDF
    Fourteen Cp*IrIII complexes, bearing various combinations of N- and C-spectator ligands, are assayed in hydrogen-transfer catalysis from isopropyl alcohol to acetophenone under various conditions to investigate ligand effects in this widely used reaction. The new cationic complexes bearing monodentate pyridine and N-heterocyclic carbene (NHC) ligands were characterized crystallographically and by variable-temperature nuclear magnetic resonance (VT-NMR). Control experiments and mercury poisoning tests showed that iridium(0) nanoparticles, although active in the reaction, are not responsible for the high activity observed for the most active precatalyst [Cp*Ir(IMe) 2Cl]BF4 (6). For efficient catalysis, it was found necessary to have both NHCs in monodentate form; tying them together in a bis-NHC chelate ligand gave greatly reduced activity. The kinetics of the base-assisted reaction showed induction periods as well as deactivation processes, and H/D scrambling experiments cast some doubt on the classical monohydride mechanism. © 2013 American Chemical Society
    • …
    corecore