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ABSTRACT 

A series of Cp*IrIII dimers have been synthesized to elucidate the mechanistic viability of 

radical oxo-coupling pathways in iridium-catalyzed O2 evolution. The oxidative stability of the 

precursors toward nanoparticle formation and their oxygen evolution activity have been 

investigated and compared to suitable monomeric analogues. We found that precursors bearing 
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monodentate NHC ligands degraded to form nanoparticles (NPs), and accordingly their O2 

evolution rates were not significantly influenced by their nuclearity or distance between the two 

metals in the dimeric precursors. A doubly chelating bis-pyridine-pyrazolide ligand provided an 

oxidation-resistant ligand framework that allowed a more meaningful comparison of catalytic 

performance of dimers with their corresponding monomers. With sodium periodate (NaIO4) as 

the oxidant, the dimers provided significantly lower O2 evolution rates per [Ir] than the 

monomer, suggesting a negative interaction instead of cooperativity in the catalytic cycle. 

Electrochemical analysis of the dimers further substantiates the notion that no radical oxyl-

coupling pathways are accessible. We thus conclude that the alternative path, nucleophilic attack 

of water on high-valent Ir-oxo species, may be the preferred mechanistic pathway of water-

oxidation with these catalysts, and bimolecular oxo-coupling is not a valid mechanistic 

alternative as in the related ruthenium chemistry, at least in the present system. 

 

Introduction 

The attractiveness of water as an alternative fuel source is growing steadily with the growth of 

worldwide population as well as increase in living standards, which demand increased 

exploration of solar power.1,2 One of the key steps in using water as a viable solar fuel is its 

oxidation to dioxygen and reducing equivalents as shown in eq 1.3,4 

 

2H2O                    4H+ + 4e- + O2       E1/2 = 1.23 V vs NHE at pH = 0
 

Equation 1. The water-oxidation half-reaction. 
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Plants, algae, and cyanobacteria oxidize water, using the oxygen evolving complex (OEC), an 

oxo-bridged Mn4Ca cluster in the enzyme photosystem II.5 Despite a growing number of 

homogeneous water oxidation catalysts utilizing a variety of transition metals (Mn, Fe, Co, Ni, 

Cu, Ru, Ir),6-14 a synthetic system combining low overpotentials with high turnover rates and 

sufficient robustness for large-scale application has yet to be developed. 

In 1982, Meyer et al. reported a ruthenium dimer as the first homogeneous water oxidation 

catalyst (WOC), and in 1999 Brudvig and Crabtree described a mangenese terpy dimer.15,16 One 

proposed mechanism for water oxidation is radical oxo-coupling (ROC) with the O-O bond 

formation being the rate-determining step. Based on the analogy with the tetrametallic oxo-

cluster in the biological OEC, it was believed that poly-metallic catalysts were generally 

beneficial for this type of mechanism.17 

In 2005, however, a series of mono-nuclear Ru-based WOCs were reported, showing that a 

single metal center can be capable of mediating the water oxidation cycle through nucleophilic 

attack of water (WNA) on an electrophilic metal-oxo.18 This finding was followed by Bernhard’s 

report in 2008 on mono-nuclear IrIII complexes as precatalysts for water-oxidation with Ce(IV).19 

Since then, IrIII half-sandwich complexes have been extensively studied as WOCs.11,12,20-22 Both 

Cp* (Cp* = pentamethylcyclopentadienyl) and Cp (Cp = cyclopentadienyl) half-sandwich IrIII 

complexes are viable precatalysts, not only for water-oxidation but also selective CH-

oxidations.23,24 We have used NaIO4 as a primary oxidant in this chemistry because of its ease of 

handling, good solubility, and lack of absorptions in the visible and near-UV. The disadvantage 

is that we cannot be certain if the reaction catalyzed in this case is true water oxidation rather 

than periodate dismutation: 2 IO4
-  2 IO3

- + O2. The analogue to the WNA mechanism would 

then become a periodate nucleophilic attack (PNA) on the metal oxo. Hetterscheid and Reek 
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have proposed such a PNA mechanism for periodate-driven O2 evolution with 

[Cp*Ir(NHC)(OH)2] (NHC = N-dimethylimidazolin-2-ylidene) based on DFT calculations.25 

Unfortunately, experimental distinction of these two cases of nucleophilic attack by oxygen 

isotope labeling is obscured by the fast oxygen exchange of periodate in aqueous solution.26 The 

fact that these precursors also evolve O2 from water using Ce(IV) or electrochemical potentials12 

shows, however, that these catalysts are able to perform true water-oxidation. 

In cases where both closed and open shell pathways are accessible, WNA or PNA can be 

expected to be slower than ROC because higher oxidation states need to be generated to obtain a 

sufficiently electrophilic oxo that can undergo WNA or PNA. Both WNA and ROC pathways 

are known to be viable, for instance, for molecular Co- and Ru-based WOCs,27,28 and in these 

systems the ligand framework dictates the mechanism by actively favoring or disfavoring 

bimolecular oxo-coupling. Recent reports on a series of Ru-WOCs demonstrate strongly 

accelerated catalysis through ligand-enhanced oxo-coupling.29-31 

In order to correctly interpret mechanistic analyses, however, one has to ascertain the integrity 

of the precursor. Some WOC precursors have been shown to undergo rapid ligand degradation 

under reaction conditions to form polymeric species in-situ, which in some cases are also active 

WOCs.32 It is thus crucial to investigate the fate of the ligands in the catalyst precursor in order 

to elucidate the mechanism by which a given system operates. 

For our Cp*IrIII precursors, we succeeded in distinguishing homogeneous from heterogeneous 

water-oxidation catalysts by monitoring the in-situ formation of IrOx material using an 

electrochemical quartz nanobalance (EQCN)20 and time-resolved dynamic light scattering 

(DLS).33 Based on kinetic analyses and previous DFT calculations, we proposed a mono-nuclear 

WNA pathway as the preferred mechanism in the homogeneous iridium systems (Figure 1).11,12 
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Figure 1. Postulated mechanisms for Ir-catalyzed water-oxidation. Left: Water nucleophilic 

attack (WNA) on a singlet oxo. Right: radical oxo-coupling (ROC) of two triplet oxo moieties 

(charges and ligands omitted for clarity) 

 

In the mono-nuclear WNA mechanism, a sequential proton-coupled one-electron oxidation of 

the IrIII precursor to an IrIV, and finally a high-valent IrV-oxo species is proposed. Recent 

experimental results support these consecutive one-electron oxidation steps through the 

observation of transient IrIV species.34-40 The closed shell IrV-oxene intermediate subsequently 

undergoes nucleophilic attack by water leading to the formation of an IrIII-(hydro)peroxide 

intermediate, which upon further oxidation would dissociate dioxygen and close the catalytic 

cycle. Computations confirmed the highly electrophilic character of an oxo-unit in an octahedral 
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IrV, and the experimental observation of first-order rate dependences on [Ir] suggested a mono-

nuclear transformation (plausibly the IVV oxidation) to be the RDS in these systems.12,40 

An alternative pathway for the formation of dioxygen might be energetically favorable when 

two metals are held close together. In this scenario (ROC, Figure 1), two open-shell Ir-oxyl 

species could undergo radical coupling leading to the formation of the O-O bond. The reverse of 

this reaction, the direct oxygenation of two IrIII with O2 to yield two IrVO, is known for 

Wilkinson’s trimesityl-iridium (doi: 10.1021.ic025700e). For our Cp*IrIII precursors, WNA 

barriers were found to be significantly lower on the singlet energy surface by DFT,12 but ROC 

barriers can be expected to be lower on the triplet energy surface. Since facile S-T 

interconversion was found for the formal (V) oxidation state (<5 kcal/mol), both pathways might 

be accessible through ligand-control as in the related ruthenium chemistry.29 In Figure 1 only 

coupling pathways from the formal (V) oxidation state are shown for the sake of simplicity, but 

other, potentially lower-energy, ROC pathways might be accessible from lower formal oxidation 

states (i.e., the doublet IrIV).41 In order to experimentally probe the viability of ROC mechanisms 

in Ir-catalyzed WO, we prepared some dimeric Cp*IrIII precursors and investigated their 

oxidative stabilities, kinetics in WO catalysis, and electrochemical behaviors, all compared to 

their respective monomers. 

 

Results and Discussion 

Since Cp*IrIII precursors with NHC ligands are easily accessible and have shown good 

performance in WOC42, we first synthesized a series of flexibly linked dimers 2a-d. Varying the 

number of methylene groups between the two NHC moieties in the bridging ligands 2a-d 

allowed us to vary the distance between the two metals without affecting the electronics.43 
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Figure 3 shows the synthesis of the half-sandwich iridium dimers 2a-d via transmetalation44-46 

from the corresponding AgI complexes 1a-d derived from known bis-imidazolium salts.43,47 
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Figure 2. Synthesis of the NHC-linked half-sandwich iridium dimers 2a-d 

 

Transmetalation of the silver-NHC complexes 1a-d onto [Cp*IrCl2]2 proceeded in nearly 

quantitative yields in dichloromethane (DCM) at room temperature. Using isolated Ag-NHC 

complexes with a coordinating halide anion ensured binding of only one NHC moiety per silver 

to afford stoichiometric NHC donor reagents. This strategy prevents halide abstraction from the 

iridium precursor and thus suppresses the formation of monomeric by-products with chelating 

bis-NHC ligands.48 Due to the presence of different conformers with distinct symmetry in 

solution, the dimers 2a-d show two sets of peaks for the bridging NHCs in the NMR spectra. 

This phenomenon has been observed previously with a variety of bridging ligands with flexible 

linkers.43,49-51 The exemplary crystal structure of 2c shown in Figure 5 confirms the expected 

connectivity. 
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Figure 3. Crystal structure of dimer 2c (thermal ellipsoids shown at 50 % probability level, 

hydrogen atoms and CH2Cl2 solvent molecules omitted for clarity) 

 

From a simple space model it becomes clear that dimer 2c in particular would provide an ideal 

distance between the two iridium centers for oxo-coupling, providing the integrity of the pre-

catalyst is retained. 

Catalytic activity of oxygen evolution was assessed for complexes 2a-d using NaIO4 as the 

oxidant. NaIO4 has been demonstrated to be a superior alternative to CAN (cerium ammonium 

nitrate, [NH4]2[CeIV(NO3)6])52 because of its mild pH and the absence of potentially seeding 

precipitates.53 Activity was measured with a Clarke-type electrode in the liquid phase, and rates 

were determined from the initial linear regime of O2 evolution. 
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Table 1. Rates of catalytic oxygen evolution using Cp*Ir(NHC) precursorsa 

compound 

initial rate 
(μmol O2 L-1 

min-1)a TOF (min-1)  

2a, dimer n=1 145.6 ± 9.8 15.7 ± 1.1 

2b, dimer n=2 128.4 ± 22.4 14.3 ± 1.9 

2c, dimer n=3 164.1 ± 16.8 18.2 ± 2.1 

2d, dimer n=4 119.2 ± 18.6 13.2 ± 2.1 

3, monomer 224.5 ± 25.0 25.0 ± 5.4 
 

a Conditions: 10 µM [Ir], 100 mM NaIO4, 25 ºC (for details see experimental section and the Supporting 

Information) 

 

As shown in Table 1, the dimers 2a-d exhibited rather similar turnover frequencies ranging 

from 14 min-1 to 18 min-1, whereas the monomer 3 (shown in Figure 4) reached slightly higher 

rates of ~25 min-1.54  

Ir

N N
Cl
Cl

 

Figure 4 Monomeric Analog 3 

 

Provided that the NHC ligands were retained throughout the WO cycle, these results would 

indicate that WNA was largely favored over ROC, and tying two metals together would rather 

obstruct turnover. In order to test the validity of this data set, we investigated the oxidative 

stability of the NHC precursors by time-resolved in-operando DLS. As can be seen in Figure 5, 
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both the dimer 2c as well as the monomer 3 degraded to form nanoparticles upon oxidation with 

excess NaIO4 in water. We have previously investigated this behavior in detail and shown that 

the heterogeneous nano-scale precipitates formed under various conditions originate from the 

iridium precursors in an oxidative degradation process.33 

 

 

 

 

 

 

 

 

 

Figure 5. Light scattering intensities and mean particle sizes of diffusional mixtures of 

complex 3 (orange) or 2c (green) at 2.5 mM [Ir] with 250 mM NaIO4 in water at room 

temperature. 

 

Although no heterogeneous material formed during the initial stage of the reaction used for the 

O2 evolution kinetics and higher iridium concentrations were required for the DLS 

measurements, the observation that the active Ir-component ultimately polymerized to oxide NPs 

strongly suggests complete loss of the organic ligands in the precursors. This observation, 

coupled with the very similar rates for the different dimers 2a-d casts doubt on the stability and 
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utility of monodentate NHC ligands for homogeneous oxidation catalysis. Oxy-functionalization 

of metal-coordinated NHCs have been observed earlier.55,56 
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Figure 6a Syntheses of complexes 4 and 5 and crystal structure of 5 (thermal ellipsoids shown 

at 50% probability, hydrogen atoms and counterion omitted for clarity). 

 

We thus turned to a more robust chelating ligand that would be more stable under reaction 

conditions to allow studying the effects of nuclearity on WO rates. The doubly chelating bis-

pyridine-pyrazolide ligand shown in Figure 6 is known to be an effective framework in ROC 

water-oxidation with binuclear Ru and Co complexes,57,58 and synthesis of the Cp*Ir compounds 
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4 and 5 was straightforward. Assessment of the oxidative stability of the monomer 4 and dimer 5 

by time-resolved DLS showed that no heterogeneous material formed under catalytic conditions 

in this case (Figure 7 and supporting information), suggesting retention of the chelate ligand. 

 

 

 

 

 

 

 

 

 

Figure 7. Light scattering intensities and mean particle sizes of diffusional mixtures of 

complex 4 (red) or 5 (blue) at 2.5 mM [Ir] with 250 mM NaIO4 in water at room temperature. 

 

With a more reliable ligand framework in hand, we compared O2 evolution rates of monomer 4 

and dimer 5 across different iridium concentrations (Figure 8). Both exhibited a linear rate 

dependence on [Ir], indicating the RDS to be first order in [Ir] even in the dimer. 

 

 

 

 



 13 

 

Figure 8. Initial O2 evolution rates of oxidatively stable monomer 4 (red) and dimer 5 (blue) at 

various iridium concentrations with 10 mM NaIO4 in water at 25 ºC. 

 

The fact that dimer 5 afforded a first-order rate constant of kobs = 0.83 ± 0.06 min-1 whereas the 

corresponding monomer 4 was almost six times faster on a per metal basis (kobs = 4.77 ± 0.12 

min-1) suggests that no cooperative effects prevailed under the conditions applied, and that the 

two metals rather hinder each other in their individual turnover. To test whether this was due to 

the formation of stable peroxo species, as reported for a related cobalt dimer,58 we attempted 

substitution of the chlorides in 5 with a µ-[O2]  ligand by reaction with Na2O2 in an ionizing 

solvent (Figure 9).  Under the conditions utilized, however, only unreacted starting material 

could be recovered from these mixtures. This result shows the difficulty of obtaining a stable 

peroxo IrIII-IrIII species, although the active catalytic species is likely to be different 

electronically and structurally.59 
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Figure 9 Attempted reaction of 5 with excess sodium peroxide. 

 

To investigate whether the observed detrimental effect of the second metal in dimers of the 

type of 5 was due to electronic communication, the aqueous electrochemistry of 4 and 5 was 

assessed by cyclic voltammetry (CV). As can be seen from Figure 10, no significant differences 

between monomer and dimer were observed, suggesting that lower oxidation-state ROC 

pathways are not directly accessible from these precursors. 

 

 

 

 

 

 

 

 

 

Figure 10. Cyclic voltammograms of 4 (red) and 5 (blue) at 1 mM [Ir] with 100 mV/s in 0.1 M 

aqueous KNO3 electrolyte (pH 4) at room temperature (for details see experimental section). 
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Previous DFT studies predicted an octahedral triplet “IrV” to have significant spin density on 

the oxyl ligand,12 whereas the SOMO of a related doublet IrIV species was found to be 

predominantly metal-centered.35 This might explain why ROC pathways, requiring radical spin 

density on the oxyl, are not accessible for iridium-based WOCs in the (IV) oxidation state, and 

suggests that once in the formal (V) oxidation state these systems preferably operate via WNA 

mechanisms on the singlet energy surface (Figure 1). The results align well with the observation 

of stereo-retention in tertiary C-H hydroxylations with the same catalyst system, ruling out 

radical rebound pathways. 

 

 

Conclusion 

In summary, we report a series of novel Cp*IrIII dimers linked via monodentate NHCs that 

degrade to nanoparticles when exposed to NaIO4 in aqueous solution. Accordingly, these dimers 

show no significant difference in O2 evolution rates with NaIO4 when compared to an analogous 

monomer. A novel Cp*IrIII dimer with an electronically communicating chelate ligand and a 

suitable monomeric analog were synthesized, showing resistance towards oxidative degradation 

to NPs under WO conditions. Both follow kinetics that are first-order in [Ir], but the dimer 

exhibits significantly lower rates for O2 evolution with NaIO4 as compared to the monomer. The 

aqueous electrochemistry of both monomer and dimer was found to be virtually identical, in 

concert indicating that no ROC pathways are accessible for Ir-based WOCs as opposed to Ru- 

and Co-based systems. Future design of iridium WOCs should therefore focus on WNA 

mechanisms. 
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Experimental Section 

General All organic solvents were dried using a Grubbs-type purification system. Deionized 

water was supplied through a centralized purification system (Dept. of Chemistry, Yale 

University). All chemicals were purchased from major commercial suppliers and used without 

further purification. [Cp*IrCl2]2,60 Cp*Ir(Me2Im)Cl2 (3),54 the bis(imidazolium) ligand precursor 

salts,43,47 and the silver NHC complexes 1a-d61 were synthesized following literature procedures. 

NMR spectra were recorded at room temperature on a 400 MHz Bruker or 500 MHz Varian 

spectrometer and referenced to the residual solvent peak (δ in ppm, J in Hz). Elemental analyses 

were performed by Robertson Microlit Laboratories (Ledgewood, NJ). 

Cp*IrIII-NHC complexes 2a-d. A 25 mL round-bottomed flask equipped with a stir bar was 

charged with the appropriate Ag-NHC complex (0.9157 mmol) and [Cp*IrCl2]2 (0.869 mmol, 

692.2 mg), the mixture evacuated and back-filled with nitrogen. Dry CH2Cl2 (10 mL) was added 

via syringe and the mixture stirred for one hour at room temperature. The resulting mixture was 

filtered through Celite, the solution reduced to ~5 mL under reduced pressure, and then pentane 

(50 mL) was added. The resulting yellow-orange precipitate was collected by filtration, washed 

with pentane (3 x 10 mL), and dried in vacuo. 

(2a) Yield: 803 mg (95%).1H NMR (400 MHz, CD2Cl2) δ 7.42 (s, 2H), 7.08 – 7.04 (s, 2H), 6.84 

(s, 2H), 3.92 (s, 6H), 1.54 (s, 30H). 13C NMR (126 MHz, CD2Cl2) δ 154.3, 124.7, 124.4, 122.6, 

89.4, 38.–7, 9.2. Anal. Calc. for C29H42Cl4Ir2N4: C, 35.80; H, 4.35; N, 5.76. Found: C, 35.61; H, 

4.13; N, 5.79.  

(2b) Yield: 814 mg (95%). 1H NMR (500 MHz, CD2Cl2) δ 8.06 (d, J = 2.0 Hz, 2H), 7.01 (d, J = 

2.0 Hz, 2H), 5.13 (d, J = 6.0 Hz, 2H), 4.38 (d, J = 6.0 Hz, 2H), 3.95 (d, J = 1.9 Hz, 6H), 1.56 (s, 
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30H). 13C NMR (126 MHz, CD2Cl2) δ 157.2, 124.1, 123.2, 89.3, 51.6, 38.7, 9.2. Anal. Calc. for 

C29H42Cl4Ir2N4: C, 37.12; H, 4.82; N, 5.59. Found: C, 37.81; H, 4.71; N, 5.33. 

(2c) Yield: 844 mg (97%).1H NMR (400 MHz, CD2Cl2) δ 7.14 (d, J = 2.2 Hz, 2H), 6.97 (d, J = 

2.1 Hz, 2H), 4.77 – 4.66 (m, 2H), 3.91 (d, J = 2.3 Hz, 6H), 3.90 – 3.81 (m, 2H), 2.44 (s, 2H), 

1.57 (d, J = 1.3 Hz, 30H). 13C NMR (126 MHz, CD2Cl2) δ 156.1, 124.1, 122.1, 89.0, 47.9, 38.6, 

35.9, 9.2. Anal. Calc. for C31H46Cl4Ir2N4: C, 37.20; H, 4.63; N, 5.60. Found: C, 36.91; H, 4.63; 

N, 5.60. 

(2d) Yield: 846 mg (96%). 1H NMR (400 MHz, CD2Cl2) δ 7.16 (d, J = 2.4 Hz, 2H), 7.00 (d, J = 

1.8 Hz, 2H), 4.73 (m, 2H), 3.92 (s, 6H), 3.73 (m, 2H), 1.99 (m, 4H), 1.55 (s, 30H). 13C NMR 

(101 MHz, CD2Cl2) δ 156.6, 123.9, 121.7, 88.9, 50.7, 38.7, 29.5, 9.2. Anal. Calc. for 

C32H48Cl4Ir2N4: C, 37.60; H, 4.77; N, 5.52. Found: C, 37.60; H, 4.53; N, 5.33. 

Synthesis of Cp*Ir(pp)Cl (4) [Cp*IrCl2]2 (0.5 eqiv., 0.125 mmol, 100 mg), 2-

pyrazolylpyridine  (1 equiv., 0.251 mmol, 36.4 mg) and NaOAc (6 equiv., 0.753 mmo, 62 mg) 

are added to a 100 mL Schlenk flask and degassed with nitrogen. 15 mL of dry dichloromethane 

is added and the reaction is stirred for 3 hours at room temperature. The reaction mixture is then 

filtered through Celite and the solvent reduced to 5 mL. Excess pentane is added and the 

resulting precipitate is filtered and washed with pentane to yield a yellow solid. Yield: 121 mg 

(96%) 1H NMR (400 MHz, CD2Cl2) δ 8.55 (ddd, J = 5.8, 1.5, 0.8 Hz, 1H), 7.76 (ddd, J = 8.1, 

7.4, 1.5 Hz, 1H), 7.66 (ddd, J = 8.1, 1.5, 0.9 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.13 (ddd, J = 7.3, 

5.8, 1.5 Hz, 1H), 6.61 (d, J = 2.0 Hz, 1H), 1.72 (s, 15H). 13C NMR (126 MHz, CD2Cl2) δ 155.5, 

150.5, 148.2, 141.3, 138.6, 122.2, 119.3, 103.0, 87.3, 8.8. Anal. Calc. for C31H46Cl4Ir2N4: C, 

42.64; H, 4.17; N, 8.29. Found: C, 42.99; H, 3.79; N, 8.12. 
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Synthesis of [Cp*2Ir2(bpp)Cl2]Cl (5) [Cp*IrCl2]2 (1 equiv., 0.44 mmol, 360 mg) is dissolved 

in 10 mL degassed dichloromethane and added to a solution of Hbpp (1 equiv., 0.44 mmol, 100 

mg) in 10 mL degassed MeOH under N2. The mixture is heated to reflux for 3 hours. The crude 

is purified on a neutral silica column. The column is first eluted with acetone to remove a yellow 

impurity. The product is then eluted using 3% MeOH/DCM. The fractions are collected and the 

solvent is reduced to 5 mL. Excess pentane is added and the resulting precipitate is filtered and 

washed with pentane to yield a yellow-orange solid. Yield: 411 mg (95%). 1H NMR (500 MHz, 

CD2Cl2) δ 8.57 (dt, J = 5.7, 1.1 Hz, 2H), 8.55 (s, 1H), 8.41 (dt, J = 8.0, 1.2 Hz, 2H), 8.03 (td, J = 

7.8, 1.4 Hz, 2H), 7.49 (ddd, J = 7.4, 5.7, 1.4 Hz, 2H), 1.56 (s, 30H). 13C NMR (126 MHz, 

CD2Cl2) δ 155.0, 150.6, 138.8, 122.7, 121.5, 119.6, 87.5, 8.8. Anal. Calc. for C31H46Cl4Ir2N4: C, 

47.29; H, 4.14; N, 9.59. Found: C, 46.61; H, 3.98; N, 9.01. 

Oxygen Evolution Assays. Oxygen evolution assays were performed as described 

previously.12,35 Measurements of O2 evolution were made with a YSI standard oxygen electrode 

inserted into a bubble-free, water-cooled jacket at 25 ˚C. In a typical experiment, 5 mL of a 

freshly prepared solution of NaIO4 (100 mM) were placed in the electrode chamber and left to 

equilibrate for several minutes. Subsequently, the appropriate volume of aqueous catalyst 

solution was injected via syringe to start the reaction. The procedure was repeated at least three 

times to ensure reproducibility. 

Dynamic Light Scattering. Light scattering experiments and data analyses were performed as 

described previously.33 NaIO4 (1 mmol, 214 mg) was dissolved in water (3 mL) just prior to 

analysis, and the clear solution passed through a hydrophobic syringe filter (Teflon, 0.2 μm pore 

size) into the sample vial in the temperature-controlled scattering chamber at 23 °C. New 

cylindrical screw-cap glass vials (15 × 45 mm) were used for each experiment. The automated 
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measurement was started, and after collection of a few data points, 1 mL of a filtered aqueous 

catalyst solution (pH=2.5 with H2SO4 in case of 4) (10 mM in [Ir] = 2.5 mM final [Ir]) was 

added via syringe to start the reaction. The diffusional mixture was left for the analysis in a dark, 

undisturbed room. 

Electrochemical Studies. Electrochemical Studies. Electrochemical measurements were made 

on a CH Instruments CHI1200B potentiostat using a standard three-electrode configuration. A 

glassy carbon electrode (surface area: 0.09 cm2) was used as the working electrode to minimize 

background oxidative current. A platinum wire was used as the counter electrode, and a Ag/AgCl 

reference was used. The measurements were carried out in 0.1 M KNO3 supporting electrolyte in 

milli-Q water, and the pH was between 4.3 and 4.5 for all measurements. 
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TOC ABSTRACT 

The synthesis of Ir dimers with both flexible and rigid ligands is described and their catalytic 

activity in periodate-driven oxygen evolution is assessed and compared to suitable monomeric 

analogs. Furthermore, their stability under catalytic conditions and their electrochemical 

behavior is described. 
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