195 research outputs found

    An Investigation into the Effects of Luminosity on the Mid-Infrared Spectral Energy Distributions of Radio-Quiet Quasars

    Get PDF
    We present an analysis of the effects of luminosity on the shape of the mid-infrared spectral energy distributions (SEDs) of 234 radio-quiet quasars originally presented by Richards et al. In quasars without evident dust extinction, the spectrally integrated optical and infrared luminosities are linearly correlated over nearly three decades in luminosity. We find a significant (>99.99% confidence) correlation between the 1.8-8.0 micron spectral index and infrared luminosity that indicates an enhancement of the mid-infrared continuum with increasing luminosity. Coupled with strong evidence for spectral curvature in more luminous quasars, we conclude this trend is likely a manifestation of the `near-infrared (3-5 micron) bump' noticed in earlier quasar SED surveys. The strength of this feature is indicative of the contribution of emission from the hottest (>1000 K) dust to the mid-infrared spectrum; higher luminosity quasars tend to show more hot dust emission. Finally, the comparable distribution of bolometric corrections from the monochromatic 3 micron luminosity as well as its lack of sensitivity to dust extinction as compared to the standard bolometric correction from nu*L_{5100A} suggest that the former may be a more robust indicator of bolometric quasar luminosity. The close link between the power in the mid-infrared and optical and the effect of luminosity on the shape of the mid-infrared continuum indicate that considering mid-infrared emission independent of the properties of the quasar itself is inadequate for understanding the parsec-scale quasar environment.Comment: Comments: 13 pages, 11 figures (3 color), uses emulateapj. Accepted for publication in Ap

    Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins,Colorado (41°N, 105°W), and comparison with model simulations

    Get PDF
    Between May 2002 and April 2006, many continuous observations of mesopause region temperature and horizontal wind, each lasting longer than 24 h (termed full-diurnal-cycle observations), were completed at the Colorado State University Na Lidar Facility in Fort Collins, Colorado (41°N, 105°W). The combined data set consists of 120 full-diurnal-cycle observations binned on a monthly basis, with a minimum of 7 cycles in April and a maximum of 18 cycles in August. Each monthly data set was analyzed to deduce mean values and tidal period perturbations. After removal of tidal signals, monthly mean values are used for the study of seasonal variations in mesopause region temperature, zonal and meridional winds. The results are in qualitative agreement with our current understanding of mean temperature and wind structures in the midlatitude mesopause region with an observed summer mesopause of 167 K at 84 km, summer peak eastward zonal wind of 48 m/s at 94 km, winter zonal wind reversal at ∌95 km, and peak summer (pole) to winter (pole) meridional flow of 17 m/s at 86 km. The observed mean state in temperature, zonal and meridional winds are compared with the predictions of three current general circulation models, i.e., the Whole Atmosphere Community Climate Model version 3 (WACCM3) with two different simulations of gravity wavefields, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), and the 2003 simulation of the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM). While general agreement is found between observation and model predictions, there exist discrepancies between model prediction and observation, as well as among predictions from different models. Specifically, the predicted summer mesopause altitude is lower by 3 km, 8 km, 3 km, and 1 km for WACCM3 the two WACCM runs, HAMMONIA, and TIME-GCM, respectively, and the corresponding temperatures are 169 K, 170 K, 158 K, and 161 K. The model predicted summer eastward zonal wind peaks to 71 m/s at 102 km, to 48 m/s at 84 km, to 75 m/s at 93 km, and to 29 m/s at 94 km, in the same order. The altitude of the winter zonal wind reversal and seasonal asymmetry of the pole-to-pole meridional flow are also compared, and the importance of full-diurnal-cycle observations for the determination of mean states is discussed

    The Extragalactic IR Background

    Get PDF
    Current limits on the intensity of the extragalactic infrared background are consistent with the expected contribution from evolving galaxies. Depending on the behaviour of the star formation rate and of the initial mass function, we can expect that dust extinction during early evolutionary phases ranges from moderate to strong. An example of the latter case may be the ultraluminous galaxy IRAS F10214+472410214 + 4724. The remarkable lack of high redshift galaxies in faint optically selected samples may be indirect evidence that strong extinction is common during early phases. Testable implications of different scenarios are discussed; ISO can play a key role in this context. Estimates of possible contributions of galaxies to the background under different assumptions are presented. The COBE/FIRAS limits on deviations from a blackbody spectrum at sub-mm wavelengths already set important constraints on the evolution of the far-IR emission of galaxies and on the density of obscured (``Type 2'') AGNs. A major progress in the field is expected at the completion of the analysis of COBE/DIRBE data.Comment: 1994, invited review to be published in the Proc. of the Internatinal Conf. "Dust, Molecules and Backgrounds: from Laboratory to Space", Capri (NA), Italy, 12--15 September, 1994, in press. Tex file, 16 pages, 6 figures not included. ASTRPD-94-10-0

    Obscured and powerful AGN and starburst activities at z~3.5

    Get PDF
    We report the discovery of two sources at z=3.867 and z=3.427 that exhibit powerful starburst and AGN activities. They benefit from data from radio to X rays from the CFHTLS-D1/SWIRE/XMDS surveys. Follow-up optical and near-infrared spectroscopy, and millimeter IRAM/MAMBO observations are also available. We performed an analysis of their spectral energy distributions to understand the origin of their emission and constrain their luminosities. A comparison with other composite systems at similar redshifts from the literature is also presented. The AGN and starburst bolometric luminosities are ~10^13 Lsun. The AGN emission dominates at X ray, optical, mid-infrared wavelengths, and probably in the radio. The starburst emission dominates in the far-infrared. The estimated star formation rates range from 500 to 3000Msun/yr. The AGN near-infrared and X ray emissions are heavily obscured in both sources with an estimated dust extinction Av>4, and Compton-thick gas column densities. The two sources are the most obscured and most luminous AGNs detected at millimeter wavelengths currently known. The sources presented in this work are heavily obscured QSOs, but their properties are not fully explained by the standard AGN unification model. In one source, the ultraviolet and optical spectra suggest the presence of outflowing gas and shocks, and both sources show emission from hot dust, most likely in the vicinity of the nucleus. Evidence of moderate AGN-driven radio activity is found in both sources. The two sources lie on the local M_BH-M_bulge relation. To remain on this relation, their star formation rate has to decrease. Our results support evolutionary models that invoke radio feedback as star formation quenching mechanism, and suggest that such a mechanism might play a major role also in powerful AGNs.Comment: Accepted for publication in Astronomy & Astrophysics (12 pages; 6 figures); replaced version includes minor language editing and revised reference

    Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention

    Get PDF
    OBJECTIVES: This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI). BACKGROUND: CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI. METHODS: After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights. RESULTS: Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60). CONCLUSIONS: These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value

    Finding Our Way through Phenotypes

    Get PDF
    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility
    • 

    corecore