1,647 research outputs found

    Accurate Liability Estimation Improves Power in Ascertained Case Control Studies

    Full text link
    Linear mixed models (LMMs) have emerged as the method of choice for confounded genome-wide association studies. However, the performance of LMMs in non-randomly ascertained case-control studies deteriorates with increasing sample size. We propose a framework called LEAP (Liability Estimator As a Phenotype, https://github.com/omerwe/LEAP) that tests for association with estimated latent values corresponding to severity of phenotype, and demonstrate that this can lead to a substantial power increase

    To what extent can headteachers be held to account in the practice of social justice leadership?

    Get PDF
    Internationally, leadership for social justice is gaining prominence as a global travelling theme. This article draws from the Scottish contribution to the International School Leadership Development Network (ISLDN) social justice strand and presents a case study of a relatively small education system similar in size to that of New Zealand, to explore one system's policy expectations and the practice realities of headteachers (principals) seeking to address issues around social justice. Scottish policy rhetoric places responsibility with headteachers to ensure socially just practices within their schools. However, those headteachers are working in schools located within unjust local, national and international contexts. The article explores briefly the emerging theoretical analyses of social justice and leadership. It then identifies the policy expectations, including those within the revised professional standards for headteachers in Scotland. The main focus is on the headteachers' perspectives of factors that help and hinder their practice of leadership for social justice. Macro systems-level data is used to contextualize equity and outcomes issues that headteachers are working to address. In the analysis of the dislocation between policy and reality, the article asks, 'to what extent can headteachers be held to account in the practice of social justice leadership?

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease

    Get PDF
    We present the first application of the hypothesis-rich mathematical theory to genome-wide association data. The Hamza et al. late-onset sporadic Parkinson's disease genome-wide association study dataset was analyzed. We found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers increased susceptibility to Parkinson's disease. The association of DZIP1 with Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing theory.Comment: 14 page

    Novel genetic analysis for case-control genome-wide association studies: quantification of power and genomic prediction accuracy

    Get PDF
    Genome-wide association studies (GWAS) are routinely conducted for both quantitative and binary (disease) traits. We present two analytical tools for use in the experimental design of GWAS. Firstly, we present power calculations quantifying power in a unified framework for a range of scenarios. In this context we consider the utility of quantitative scores (e.g. endophenotypes) that may be available on cases only or both cases and controls. Secondly, we consider, the accuracy of prediction of genetic risk from genome-wide SNPs and derive an expression for genomic prediction accuracy using a liability threshold model for disease traits in a case-control design. The expected values based on our derived equations for both power and prediction accuracy agree well with observed estimates from simulations

    High throughput analysis of epistasis in genome-wide association studies with BiForce

    Get PDF
    Motivation: Gene–gene interactions (epistasis) are thought to be important in shaping complex traits, but they have been under-explored in genome-wide association studies (GWAS) due to the computational challenge of enumerating billions of single nucleotide polymorphism (SNP) combinations. Fast screening tools are needed to make epistasis analysis routinely available in GWAS. Results: We present BiForce to support high-throughput analysis of epistasis in GWAS for either quantitative or binary disease (case–control) traits. BiForce achieves great computational efficiency by using memory efficient data structures, Boolean bitwise operations and multithreaded parallelization. It performs a full pair-wise genome scan to detect interactions involving SNPs with or without significant marginal effects using appropriate Bonferroni-corrected significance thresholds. We show that BiForce is more powerful and significantly faster than published tools for both binary and quantitative traits in a series of performance tests on simulated and real datasets. We demonstrate BiForce in analysing eight metabolic traits in a GWAS cohort (323 697 SNPs, >4500 individuals) and two disease traits in another (>340 000 SNPs, >1750 cases and 1500 controls) on a 32-node computing cluster. BiForce completed analyses of the eight metabolic traits within 1 day, identified nine epistatic pairs of SNPs in five metabolic traits and 18 SNP pairs in two disease traits. BiForce can make the analysis of epistasis a routine exercise in GWAS and thus improve our understanding of the role of epistasis in the genetic regulation of complex traits. Availability and implementation: The software is free and can be downloaded from http://bioinfo.utu.fi/BiForce/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online
    corecore