114 research outputs found

    Pre-Partum Diet of Adult Female Bearded Seals in Years of Contrasting Ice Conditions

    Get PDF
    Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ13C and δ15N) measured in whiskers collected from their newborn pups. The δ15N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals

    Big data analyses reveal patterns and drivers of the movements of southern elephant seals

    Full text link
    The growing number of large databases of animal tracking provides an opportunity for analyses of movement patterns at the scales of populations and even species. We used analytical approaches, developed to cope with big data, that require no a priori assumptions about the behaviour of the target agents, to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina) in the Southern Ocean, that was comprised of >500,000 location estimates collected over more than a decade. Our analyses showed that the displacements of these seals were described by a truncated power law distribution across several spatial and temporal scales, with a clear signature of directed movement. This pattern was evident when analysing the aggregated tracks despite a wide diversity of individual trajectories. We also identified marine provinces that described the migratory and foraging habitats of these seals. Our analysis provides evidence for the presence of intrinsic drivers of movement, such as memory, that cannot be detected using common models of movement behaviour. These results highlight the potential for big data techniques to provide new insights into movement behaviour when applied to large datasets of animal tracking.Comment: 18 pages, 5 figures, 6 supplementary figure

    Behavioural ontogeny of bearded seals Erignathus barbatus through the first year of life

    Get PDF
    Funding was provided by the Norwegian Research Council (MARE programme, grant number 164940). C.D.H. was funded by the Norwegian Polar Institute’s Centre for Ice, Climate and Ecosystems.Pinniped pups face special ontogenetic challenges as they are born and receive maternal care on solid substrates (land or ice) but must transition to feeding aquatically following weaning. In this study, Satellite Relay Data Loggers were used to study behavioural ontogeny of bearded seal Erignathus barbatus pups (n = 13) through their first year in Svalbard, Norway. Pups occupied shallow, coastal habitats and were found in areas with intermediate ice concentrations (in seasons with sea ice - late-autumn/winter). Most pups showed exploratory movement patterns that peaked in the weeks following weaning; maximum home range size occurred at 31 to 60 days of age. Thereafter, home range size decreased with pups settling into areas along the coast. Time spent diving, dive duration, dive depth and time at the bottom of dives increased during the first weeks of independence, stabilizing when pups were ~50 d old. Dive depth subsequently decreased to depths comparable to adult bearded seals (by the time pups were ~175 d old). Record maximum dive depth (368 m) and duration (16.5 min) were performed by pups that were 66 and 224 d old, respectively. Time spent hauled out decreased after weaning, with pups hauling out only sporadically after they were 75 d old. Bearded seals pups seem to be physiologically and behaviourally well developed by the time they are two months old. Pups did not display the individually specialized diving behaviour seen in adults, which suggests that they continue to fine-tune their aquatic and other life-skills well past the end of the first year of life.Publisher PDFPeer reviewe

    Circumpolar habitat use in the southern elephant seal : implications for foraging success and population trajectories

    Get PDF
    In the Southern Ocean, wide-ranging predators offer the opportunity to quantify how animals respond to differences in the environment because their behavior and population trends are an integrated signal of prevailing conditions within multiple marine habitats. Southern elephant seals in particular, can provide useful insights due to their circumpolar distribution, their long and distant migrations and their performance of extended bouts of deep diving. Furthermore, across their range, elephant seal populations have very different population trends. In this study, we present a data set from the International Polar Year project; Marine Mammals Exploring the Oceans Pole to Pole for southern elephant seals, in which a large number of instruments (N = 287) deployed on animals, encompassing a broad circum-Antarctic geographic extent, collected in situ ocean data and at-sea foraging metrics that explicitly link foraging behavior and habitat structure in time and space. Broadly speaking, the seals foraged in two habitats, the relatively shallow waters of the Antarctic continental shelf and the Kerguelen Plateau and deep open water regions. Animals of both sexes were more likely to exhibit area-restricted search (ARS) behavior rather than transit in shelf habitats. While Antarctic shelf waters can be regarded as prime habitat for both sexes, female seals tend to move northwards with the advance of sea ice in the late autumn or early winter. The water masses used by the seals also influenced their behavioral mode, with female ARS behavior being most likely in modified Circumpolar Deepwater or northerly Modified Shelf Water, both of which tend to be associated with the outer reaches of the Antarctic Continental Shelf. The combined effects of (1) the differing habitat quality, (2) differing responses to encroaching ice as the winter progresses among colonies, (3) differing distances between breeding and haul-out sites and high quality habitats, and (4) differing long-term regional trends in sea ice extent can explain the differing population trends observed among elephant seal colonies.Publisher PDFPeer reviewe

    In-situ observations using tagged animals

    Get PDF
    Marine mammals help gather information on some of the harshest environments on the planet, through the use of miniaturized ocean sensors glued on their fur. Since 2004, hundreds of diving marine animals, mainly Antarctic and Arctic seals, have been fitted with a new generation of Argos tags developed by the Sea Mammal Research Unit of the University of St Andrews in Scotland, UK. These tags investigate the at-sea ecology of these animals while simultaneously collecting valuable oceanographic data. Some of the study species travel thousands of kilometres continuously diving to great depths (up to 2100 m). The resulting data are now freely available to the global scientific community at http://www.meop.net. Despite great progress in their reliability and data accuracy, the current generation of loggers while approaching standard ARGO quality specifications have yet to match them. Yet, improvements are underway; they involve updating the technology, implementing a more systematic phase of calibration and taking benefit of the recently acquired knowledge on the dynamical response of sensors. Together these efforts are rapidly transforming animal tagging into one of the most important sources of oceanographic data in polar regions and in many coastal areas.Publisher PDFNon peer reviewe

    Bayesian Estimation of Animal Movement from Archival and Satellite Tags

    Get PDF
    The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as existing knowledge of the animal's potential range, light levels or direct location estimates, auxiliary data, and movement models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking data using readily available tools

    The role of allochrony in influencing interspecific differences in foraging distribution during the non-breeding season between two congeneric crested penguin species

    Get PDF
    Mechanisms promoting coexistence between closely related species are fundamental for maintaining species diversity. Mechanisms of niche differentiation include allochrony which offsets the peak timing of resource utilisation between species. Many studies focus on spatial and temporal niche partitioning during the breeding season, few have investigated the role allochrony plays in influencing interspecific segregation of foraging distribution and ecology between congeneric species during the non-breeding season. We investigated the non-breeding migrations of Snares (Eudyptes robustus) and Fiordland penguins (Eudyptes pachyrhynchus), closely related species breeding between 100–350 km apart whose migration phenology differs by two months. Using light geolocation tracking, we examined the degree of overlap given the observed allochrony and a hypothetical scenario where the species commence migration simultaneously. We found that Fiordland penguins migrated to the Sub-Antarctic Frontal Zone and Polar Frontal Zone in the austral autumn whereas Snares penguins disperse westwards staying north of the Sub-Tropical Front in the austral winter. Our results suggest that allochrony is likely to be at the root of segregation because the relative profitability of the different water masses that the penguins forage in changes seasonally which results in the two species utilising different areas over their core non-breeding periods. Furthermore, allochrony reduces relatively higher levels of spatiotemporal overlap during the departure and arrival periods, when the close proximity of the two species’ colonies would cause the birds to congregate in similar areas, resulting in high interspecific competition just before the breeding season. Available evidence from other studies suggests that the shift in phenology between these species has arisen from adaptive radiation and phenological matching to the seasonality of local resource availability during the breeding season and reduced competitive overlap over the non-breeding season is likely to be an incidental outcome

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education)

    When diving animals help us to observe the oceans: the MEOP data portal

    Get PDF
    Seals help gather information on some of the harshest environments on the planet, through the use of miniaturized ocean sensors glued on their fur. The resulting data – gathered from remote, icy seas over the last decade – are now freely available to scientists around the world from the data portal http://www.meop.net. The Polar oceans are changing rapidly as a result of global warming. Ice caps in Antarctica and Greenland are melting, releasing large quantities of freshwater into surface waters. The winter sea ice cover is receding in the Arctic and in large areas of the Southern Ocean, which promotes further warming. Southern winds are intensifying for reasons that are not fully understood. To understand the changing marine environment, it is necessary to have a comprehensive network of oceanographic measurements. Yet, until recently, the harsh climate and remoteness of these areas make them extremely difficult to observe. Diving marine animals equipped with sensors are now increasingly filling in the gaps. When diving animals help us to observe the oceans Since 2004, hundreds of diving marine animals, mainly Antarctic and Arctic seals, were fitted with a new generation of Argos tags developed by the Sea Mammal Research Unit of the University of St. Andrews in Scotland (Fig. 1). These tags can be used to investigate simultaneously the at-sea ecology (displacement, behaviour, dives, foraging success...) of these animals while collecting valuable oceanographic data (Boehme et al. 2009). Some of these species are travelling thousands of kilometres continuously diving to great depths (590 ± 200 m, with maxima around 2000m). The overall objective of most marine animal studies is to assess how their foraging behavior responds to oceanographic changes and how it affects their ability to aquire the resources they need to survive. But in the last decade, these animals have become an essential source of temperature and salinity profiles, especially for the polar oceans. For example, elephant seals and Weddell seals have contributed 98 % of the existing temperature and salinity profiles within the Southern Ocean pack ice. The sensors are non-invasive (attached to the animal’s fur, they naturally fall off when the animal moults) and the only devices of their kind that can be attached to animals. MEOP: an international data portal for ocean data collected by marine animals The international consortium MEOP (Marine mammals Exploring the Ocean Pole-to-pole), originally formed during the International Polar Year in 2008-2009, aims to coordinate at the global scale animal tag deployments, oceanographic data processing and data distribution. The MEOP consortium includes participants from 12 countries (Australia, Brazil, Canada, China, United Kingdom, United States, France, Germany, Greenland, Norway, South Africa and Sweden). The MEOP consortium is associated with GOOS (Global Ocean Observing System), POGO (Partnership for Observation of the Global Oceans), and SOOS (Southern Ocean Observing System). At the European level, the European Animal-Borne Instrument (ABI) EuroGOOS Task Team is about to be launched to facilitate and promote the use of animal-borne instruments. Over 300,000 oceanographic profiles (i.e. representing 1/3 of the total number of Argo profiles) collected by marine biologists have already been made freely available to the international community through the MEOP data portal (Fig. 2). This so-called MEOP-CTD database is a significant contribution to the observation of the world ocean that can be used to conduct regional Polar studies. The MEOP-CTD database of animal-derived temperature and salinity profiles An increasing number of studies now show the importance of these remote and inaccessible parts of the ocean, which are so difficult to observe. For example, more than 90% of extra heat in the Earth system is now stored in the oceans and the Southern Ocean in particular is a key site for understanding the uptake of heat and carbon. MEOP provides several thousand oceanographic profiles per year helping us to close gaps in our understanding of the climate system. Instrumented animals complement efficiently other existing observing systems, such as Argo buoys, providing data in sea-ice covered areas and on high-latitude continental shelves. Recent published work (Roquet et al. 2013; Roquet et al. 2014) has shown how important such observations are in predicting ice cover and mixed layer depth in large parts of the oceans where the observations were made. The inclusion of these data should improve significantly the quality of the projections provided by ocean-climate models. All these data are now available into a format file (Argo standard format) easily usable by oceanographers and accessible via the MEOP portal where it can be freely and easily downloaded by users (national data centers, researchers...) with a guaranteed quality level. This database is updated on an annual basis, and it has already been integrated into major oceanographic data centres including NODC, BODC and Coriolis. Figures Figure 1: Weddell seal carrying a SRDL-CTD instrument that collects temperature and salinity profiles while the animal is at sea (Credits: D. Costa). Figure 2: Distribution of hydrographic data in the MEOPCTD database for the Southern Ocean sector (source: meop.net). References Boehme, L. et al., 2009. Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection. Ocean Science, 5:685-695. Roquet F. et al., 2013. Estimates of the Southern Ocean General Circulation Improved by Animal-Borne Instruments. Geoph. Res. Letts., 40:1-5. doi: 10.1002/2013GL058304 Roquet F. et al., 2014. A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals. Nature Scientific Data, 1:140028, doi: 10.1038/sdata.2014.2
    • …
    corecore