22 research outputs found

    Terrestrial ecological risk analysis via dietary exposure at uranium mine sites in the Grand Canyon watershed (Arizona, USA)

    Get PDF
    The U.S. Department of the Interior recently included uranium (U) on a list of mineral commodities that are considered critical to economic and national security. The uses of U for commercial and residential energy production, defense applications, medical device technologies, and energy generation for space vehicles and satellites are known, but the environmental impacts of uranium extraction are not always well quantified. We conducted a screening-level ecological risk analysis based on exposure to miningrelated elements via diets and incidental soil ingestion for terrestrial biota to provide context to chemical characterization and exposures at breccia pipe U mines in northern Arizona. Relative risks, calculated as hazard quotients (HQs), were generally low for all biological receptor models. Our models screened for risk to omnivores and insectivores (HQs\u3e1) but not herbivores and carnivores. Uranium was not the driver of ecological risk; arsenic, cadmium, copper, and zinc were of concern for biota consuming ground-dwelling invertebrates. Invertebrate species composition should be considered when applying these models to other mining locations or future sampling at the breccia pipe mine sites. Dietary concentration thresholds (DCTs) were also calculated to understand food concentrations that may lead to ecological risk. The DCTs indicated that critical concentrations were not approached in our model scenarios, as evident in the very low HQs for most models. The DCTs may be used by natural resource and land managers as well as mine operators to screen or monitor for potential risk to terrestrial receptors as mine sites are developed and remediated in the future

    Elemental and radionuclide exposures and uptakes by small rodents, invertebrates, and vegetation at active and post-production uranium mines in the Grand Canyon watershed

    Get PDF
    The effects of breccia pipe uranium mining in the Grand Canyon watershed (Arizona) on ecological and cultural resources are largely unknown. We characterized the exposure of biota to uranium and cooccurring ore body elements during active ore production and at a site where ore production had recently concluded. Our results indicate that biota have taken up uranium and other elements (e.g., arsenic, cadmium, copper, molybdenum, uranium) from exposure to ore and surficial contamination, like blowing dust. Results indicate the potential for prolonged exposure to elements and radionuclides upon conclusion of active ore production. Mean radium-226 in deer mice was up to 4 times greater than uranium-234 and uranium-238 in those same samples; this may indicate a potential for, but does not necessarily imply, radium-226 toxicity. Soil screening benchmarks for uranium and molybdenum and other toxicity thresholds for arsenic, copper, selenium, uranium (e.g., growth effects) were exceeded in vegetation, invertebrates, and rodents (Peromyscus spp., Thomomys bottae, Tamias dorsalis, Dipodomys deserti). However, the prevalence and severity of microscopic lesions in rodent tissues (as direct evidence of biological effects of uptake and exposure) could not be definitively linked to mining. Our data indicate that land managers might consider factors like species, seasonal changes in environmental concentrations, and bioavailability, when determining mine permitting and remediation in the Grand Canyon watershed. Ultimately, our results will be useful for site-specific ecological risk analysis and can support future decisions regarding the mineral extraction withdrawal in the Grand Canyon watershed and elsewhere

    Assessment of Chronic Low-Dose Elemental and Radiological Exposures of Biota at the Kanab North Uranium Mine Site in the Grand Canyon Watershed

    Get PDF
    High-grade U ore deposits are in various stages of exploitation across the Grand Canyon watershed, yet the effects of U mining on ecological and cultural resources are largely unknown. Wecharacterized the concentrations of Al, As, Bi, Cd, Co, Cu, Fe, Pb, Hg, Mo, Ni, Se, Ag, Tl, Th, U, and Zn, gross alpha and beta activities, and U and Th radioisotopes in soil, vegetation (Hesperostipa comata, Artemisia tridentata, Tamarix chinensis), and rodents (Peromyscus maniculatus, P. boylii) to waste material at the Kanab North mine, a mine with decades-long surficial contamination, and compared the concentrations (P\u3c0.01) to those at a premining site (Canyon Mine). Rodent tissues were also analyzed for radium-226 and microscopic lesions. Radioactivities and some elemental concentrations (e.g., Co, Pb, U) were greater in the Kanab North mine biological samples than in Canyon Mine biota, indicating a mining-related elemental signature. Mean rodent Ra-226 (111 Bq/kg dry weight [dry wt]) was 3 times greater than expected, indicating radioactive disequilibrium. Multiple soil sample U concentrations exceeded a screening benchmark, growth inhibition thresholds for sensitive plants, and an EC20 for a soil arthropod. Lesions associated with metals exposure were also observed more frequently in rodents at Kanab North than those at Canyon Mine but could not be definitively attributed to U mining. Our results indicate that Kanab North biota have taken up U mining-related elements owing to chronic exposure to surficial contamination. However, no literature-based effects thresholds for small rodents were exceeded, and only a few soil and vegetation thresholds for sensitive species were exceeded; therefore, adverse effects to biota from U mining-related elements at Kanab North are unlikely despite chronic exposure

    Metabarcoding assays for the detection of freshwater mussels (Unionida) with environmental DNA

    Get PDF
    Freshwater mussels of the order Unionida are a widely distributed taxon that are important in maintaining freshwater ecosystems and are also highly imperiled throughout the world. Monitoring of mussel populations with environmental DNA (eDNA) is an attractive alternative to traditional methods because it is noninvasive and requires less labor and taxonomic knowledge from field personnel. We developed eDNA metabarcoding assays specific to freshwater mussels and tested them at six sites in the Clinch River, located in the southeastern United States. Our objective was to determine the utility of eDNA metabarcoding for future monitoring of mussel populations and restoration efforts in this watershed. Two metabarcoding assays that target the mitochondrial DNA regions of the cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit (ND1) genes were developed and tested. Our assays appear to be order specific, amplifying members from the two families found in North America, Unionidae and Margaritiferidae, while not amplifying nontarget fish or other bivalve species. From the field collected samples, our assays together detected 19 species, eight of which are listed as federally endangered. The assays also detected 42%, 58%, and 54% of the species identified by recent quantitative visual mussel surveys at three sampling sites. Increased sampling effort by processing a greater water volume or number of samples will likely increase species detections. These eDNA metabarcoding assays may enable enhanced monitoring of freshwater mussel assemblages and subsequently inform conservation efforts

    Widespread occurrence of intersex in black basses (\u3ci\u3eMicropterus\u3c/i\u3e spp.) from U.S. rivers, 1995–2004

    Get PDF
    Intersex occurrence in freshwater fishes was evaluated for nine river basins in the United States. Testicular oocytes (predominantly male testes containing female germ cells) were the most pervasive form of intersex observed, even though similar numbers of male (n = 1477) and female (n = 1633) fish were examined. Intersex was found in 3% of the fish collected. The intersex condition was observed in four of the 16 species examined (25%) and in fish from 34 of 111 sites (31%). Intersex was not found in multiple species from the same site but was most prevalent in largemouth bass (Micropterus salmoides; 18% of males) and smallmouth bass (M. dolomieu; 33% of males). The percentage of intersex fish per site was 8–91% for largemouth bass and 14–73% for smallmouth bass. The incidence of intersex was greatest in the southeastern United States, with intersex largemouth bass present at all sites in the Apalachicola, Savannah, and Pee Dee River Basins. Total mercury, trans-nonachlor, p,p\u27-DDE, p,p\u27-DDD, and total PCBs were the most commonly detected chemical contaminants at all sites, regardless of whether intersex was observed. Although the genotype of the intersex fish was not determined, the microscopic appearance of the gonads, the presence of mature sperm, and the concentrations of sex steroid hormones and vitellogenin indicate the intersex bass were males. Fewre productive endpoints differed significantly among male and intersex bass; plasma vitellogenin concentration in males was not a good indicator of intersex presence. Hierarchical linkages of the intersex condition to reproductive function will require a more quantitative measure of intersex (e.g. severity index) rather than presence or absence of the condition. The baseline incidence of intersex gonadal tissue in black basses and other freshwater fishes is unknown, but intersex prevalence may be related to collection season, age, and endocrine active compounds in the environment. Intersex was not found in largemouth bass older than five years and was most common in 1–3-year-old male largemouth bass. The cause(s) of intersex in these species is also unknown, and it remains to be determined whether the intersex we observed in largemouth and smallmouth bass developed during sex differentiation in early life stages, during exposure to environmental factors during adult life stages, or both

    Environmental Contaminants and their effects on fish in the Colorado River Basin

    No full text
    Fish in the nation's rivers are exposed to many classes of environmental contaminants. Some of these contaminants accumulate in fish tissues and are passed on to consumers, such as other fish, wildlife, and humans. These compounds, and many others which do not accumulate in tissues, may weaken the fish's ability to maintain healthy and viable populations. By measuring the effects that contaminants have on fish, as well as contaminant concentrations in tissue, we can evaluate the quality of the habitat relative to contamination. In the summer and fall of 2003, the U.S. Geological Survey evaluated the effects that contaminants have on organisms by measuring several physiological and biochemical functions in resident fish species in the Colorado River Basin. Assessing contaminants effects in the Colorad River Basin is important for the protection of species dependent on the unique ecosystem and the people utilizing its resources. Sources of contaminants in the Colorado River Basin

    A Geospatial Approach to Identify Water Quality Issues for National Wildlife Refuges in Oregon and Washington

    Get PDF
    Many National Wildlife Refuges (Refuges) have impaired water quality resulting from historic and current land uses, upstream sources, and aerial pollutant deposition. Competing duties limit the time available for Refuge staff to identify and evaluate potential water quality issues. As a result, water quality–related issues may not be resolved until a problem has already arisen. This study developed a geospatial approach for identifying and prioritizing water quality issues affecting natural resources (including migratory birds and federally listed species) within Refuge boundaries. We assessed the location and status of streams pursuant to the Clean Water Act in relation to individual Refuges in Oregon and Washington, United States. Although twelve Refuges in Oregon (60%) and eight Refuges in Washington (40%) were assessed under the Clean Water Act, only 12% and 3% of total Refuge stream lengths were assessed, respectively. Very few assessed Refuge streams were not designated as impaired (0% in Oregon, 1% in Washington). Despite the low proportions of stream lengths assessed, most Refuges in Oregon (70%) and Washington (65%) are located in watersheds with approved total maximum daily loads. We developed summaries of current water quality issues for individual Refuges and identified large gaps for Refuge-specific water quality data and habitat utilization by sensitive species. We conclude that monitoring is warranted on many Refuges to better characterize water quality under the Clean Water Act

    Environmental contaminants in Freshwater Fish and Their Risk to Piscivorous Wildlife Based on a National Monitoring Program

    Get PDF
    Organochlorine chemical residues and elemental concentrations were measured in piscivorous and benthivorous fish at 111 sites from large U.S. river basins. Potential contaminant sources such as urban and agricultural runoff, industrial discharges, mine drainage, and irrigation varied among the sampling sites. Our objectives were to provide summary statistics for chemical contaminants and to determine if contaminant concentrations in the fish were a risk to wildlife that forage at these sites. Concentrations of dieldrin, total DDT, total PCBs, toxaphene, TCDDEQ, cadmium, chromium, mercury, lead, selenium, and zinc exceeded toxicity thresholds to protect fish and piscivorous wildlife in samples from at least one site; most exceedences were for total PCBs, mercury, and zinc. Chemical concentrations in fish from the Mississippi River Basin exceeded the greatest number of toxicity thresholds. Screening level wildlife risk analysis models were developed for bald eagle and mink using no adverse effect levels (NOAELs), which were derived from adult dietary exposure or tissue concentration studies and based primarily on reproductive endpoints. No effect hazard concentrations (NEHC) were calculated by comparing the NOAEL to the food ingestion rate (dietary-based NOAEL) or biomagnification factor (tissue-based NOAEL) of each receptor. Piscivorous wildlife may be at risk from a contaminant if the measured concentration in fish exceeds the NEHC. Concentrations of most organochlorine residues and elemental contaminants represented no to low risk to bald eagle and mink at most sites. The risk associated with pentachloroanisole, aldrin, Dacthal, methoxychlor, mirex, and toxaphene was unknown because NOAELs for these contaminants were not available for bald eagle or mink. Risk differed among modeled species and sites. Our screening level analysis indicates that the greatest risk to piscivorous wildlife was from total DDT, total PCBs, TCDD-EQ, mercury, and selenium. Bald eagles were at greater risk to total DDT and total PCBs than mink, whereas risks of TCDD-EQ, mercury, and selenium were greater to mink than bald eagle

    Relations between and among contaminant concentrations and biomarkers in black bass (\u3ci\u3eMicropterus\u3c/i\u3e spp.) and common carp (\u3ci\u3eCyprinus carpio\u3c/i\u3e) from large U.S. rivers, 1995–2004

    Get PDF
    Environmental contaminant and biomarker monitoring data from major U.S. river basins were summarized for black bass (Micropterus spp.) and common carp (Cyprinus carpio) sampled over a nine year period. Cumulative frequency distributions revealed taxon differences for many organochlorine residue concentrations, elemental contaminant concentrations, and biomarkers, but few gender differences were evident for chemical concentrations. Concentrations of dacthal, pentachloroanisole, p,p\u27-DDE, endosulfan sulfate, barium, cadmium, copper, manganese, lead, selenium, vanadium, and zinc were greater in carp than bass, but concentrations of mercury and magnesium were greater in bass. Gender differences were evident in bass for mercury and in carp for zinc, but the differences were small compared to taxon differences. Greater vitellogenin concentrations, 17B-estradiol concentrations, 17B-estradiol/11-ketotestosterone ratios, and percent oocyte atresia in female carp compared to female bass may be related to the sequential spawning of carp. Regression analyses indicated that as much as 78% of biomarker variation was explained by chemical contaminant concentrations. Sites grouped consistently by river basin in the chemical contaminant principal components analysis (PCA) models and were driven by mercury, magnesium, barium, mirex, and oxychlordane. PCA models for the biomarkers did not group the sites by basin for either bass or carp. Statistical analyses and data interpretation were limited by the study design. The implications of these limitations are discussed. Recommendations to be considered during the planning of future monitoring studies include the exclusion of gender- and species-specific sampling for certain chemical contaminants considering analytical methods with appropriate sensitivities; and allowing for the addition of new chemical and biological variables as methods and information needs evolve
    corecore