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Elemental and radionuclide exposures and uptakes by small rodents,
invertebrates, and vegetation at active and post-production uranium
mines in the Grand Canyon watershed

Danielle Cleveland a, *, Jo Ellen Hinck a, Julia S. Lankton b

a U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO, 65201, USA
b U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, WI, 53711, USA

h i g h l i g h t s

� First report of elements, radionuclides in biota at active, post-production uranium mines near Grand Canyon.
� Biota take up mining-related radionuclides, uranium, other elements.
� Some element concentrations remain elevated after cessation of active mining.
� Uranium, copper, arsenic, molybdenum, nickel, and lead may serve as mining signatures in biota.
� Prevalence and severity of lesions in livers and kidneys not definitively linked to mining.
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a b s t r a c t

The effects of breccia pipe uranium mining in the Grand Canyon watershed (Arizona) on ecological and
cultural resources are largely unknown. We characterized the exposure of biota to uranium and co-
occurring ore body elements during active ore production and at a site where ore production had
recently concluded. Our results indicate that biota have taken up uranium and other elements (e.g.,
arsenic, cadmium, copper, molybdenum, uranium) from exposure to ore and surficial contamination, like
blowing dust. Results indicate the potential for prolonged exposure to elements and radionuclides upon
conclusion of active ore production. Mean radium-226 in deer mice was up to 4 times greater than
uranium-234 and uranium-238 in those same samples; this may indicate a potential for, but does not
necessarily imply, radium-226 toxicity. Soil screening benchmarks for uranium and molybdenum and
other toxicity thresholds for arsenic, copper, selenium, uranium (e.g., growth effects) were exceeded in
vegetation, invertebrates, and rodents (Peromyscus spp., Thomomys bottae, Tamias dorsalis, Dipodomys
deserti). However, the prevalence and severity of microscopic lesions in rodent tissues (as direct evidence
of biological effects of uptake and exposure) could not be definitively linked to mining. Our data indicate
that land managers might consider factors like species, seasonal changes in environmental concentra-
tions, and bioavailability, when determining mine permitting and remediation in the Grand Canyon
watershed. Ultimately, our results will be useful for site-specific ecological risk analysis and can support
future decisions regarding the mineral extraction withdrawal in the Grand Canyon watershed and
elsewhere.

Published by Elsevier Ltd.

1. Introduction

Solution-collapse breccia pipes in the Grand Canyon region host
some of the highest-grade uranium (U)-bearing ore in the United

States. Mineralized breccia pipes are located on or immediately
adjacent to Federal, State, and Tribal lands both north and south of
Grand Canyon National Park and the Colorado River. The U ores are
intergrown with co-occurring sulfide and oxide minerals, often
resulting in enriched concentrations of copper (Cu), lead (Pb),
molybdenum (Mo), arsenic (As), and other elements (Alpine, 2010).
Althoughmore than 150,000metric tons of ore have been produced* Corresponding author.
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in the region to date (Energy Fuels Inc, 2014; Otton and Van Gosen,
2010), uncertainty about the potential effects of U mining on
environmental and cultural resources in the region remains.

Grand Canyon National Park (GCNP) was designated a United
Nations Educational, Scientific, and Cultural Organization World
Heritage Site in 1979 for its exceptional beauty, having a geological
record spanning the Precambrian to Cenozoic eras, and having
diverse ecosystems and biological environments consisting of five
of seven life zones in North Americawithin the canyonwalls (WHC,
1979). The Grand Canyon is also a refuge for dwindling ecosystems
(e.g., desert riparian) and is home to endemic, rare, or endangered
species (e.g., Tusayan fameflower, Phemeranthus validulus; Kaibab
swallowtail, Papilio indra kaibabensis). Archaeological sites in the
Grand Canyon watershed preserve ancient Native American struc-
tures and artifacts; and the region remains culturally important,
serving as habitat for ceremonial and subsistence plants and ani-
mals (e.g., sagebrush, Artemisia spp.; pinyon pine, Pinus edulis; elk,
Cervus elaphus canadensis). However, culturally-significant lands
and resources are not limited to those immediately within the
Grand Canyon walls. Rather, the larger regional landscapes (e.g.,
lands extending north into Utah and south of GCNP) also play
significant roles in Native American creation stories and other
religious and subsistence activities (e.g., Tikalsky and Euler, 2010).
One example is Red Butte (located approximately 32 km south of
GCNP), a sacred site for Native Americans, including the Havasupai
Tribe. Red Butte and nearby areas are designated as a Traditional
Cultural Property (TCP); and the TCP includes the Canyon Uranium
Mine (35�52059.300 N, 112�05046.100 W).

In 2012, the Secretary of the U.S. Department of the Interior
placed a 20-year limit on mineral extraction on federal lands in the
Grand Canyon watershed (USDOI, 2012) to permit further study of
the environmental effects of U mining. The public is often focused
on radiation concerns of U mining, but chemical exposure to U and
its co-occurring ore body elements may pose a greater toxicological
risk to biota (Hinck et al., 2010). The chemical toxicity and effects of
U exposure, particularly on the terrestrial food web, is a significant
data gap in the scientific literature. Further, the region’s semi-arid
climate, seasonal storms, and wildfire potential may mobilize U
and co-occurring ore body elements beyond the mine perimeters
(e.g., Sims et al., 2013).

Toxicity varies among elements (e.g., speciation, solubility),
exposure pathways, and biological receptors (Hinck et al., 2014).
Further, elemental toxicity and the priority of the exposure path-
ways can be dependent on the mining life stage. For example,
surficial concentrations of elements and radioisotopes in soil can
increase during U ore production compared to the pre-production
stage; (Cleveland et al., 2019; Hinck et al., 2014, 2017; Otton et al.,
2010), and the weathering of exposed waste rock during active
production and post-production prior to reclamation can enhance
the environmental mobility of elements and radioisotopes
(Attendorn and Bowen, 1997; Lottermoser et al., 2005). Previous
studies by the U.S. Geological Survey have established pre-mining
elemental and radiological baselines in soil and biota (Hinck
et al., 2017; Naftz and Walton-Day, 2016); and results for Se and
As in amphibian and bird tissues indicated that further monitoring
of breccia pipe sites as mining progressed could be warranted.
Cleveland et al. (2019) found that biota have taken up mining-
related elements following decades-long chronic exposure to sur-
ficial contamination mine wastes.

Building upon these results, we aimed to determine how
elemental and radiochemical concentrations in biota change over
the active and post-production mining life stages. Our study was
designed to compare the active and post-production results to
concentrations in similar species collected from a pre-production
mine site (Hinck et al., 2017) and a non-mineralized reference

site, to understand important pathways of exposure, uptake, and
effect endpoints. We evaluated exposure and uptake by measuring
elements and radioisotopes in biological tissues (above-ground
vegetation, invertebrates, small rodents); and we examined rodent
livers and kidneys for microscopic lesions as evidence of sublethal
biological effects. Few studies at uranium mines include exposure
and biological effects; most studies in the literature compare
exposure or effects data at large, open-pit mines to reference sites.
In contrast, our study design allows for comparisons throughout
the mining life cycle because breccia pipe deposits have small
footprints and are regionally co-located. We hypothesized that
exposure to elements and radioisotopes would be greater at the
active-production site compared to the post-production, pre-pro-
duction, and reference sites, with the potential for increased
adverse effects at active-production and post-production sites. We
further hypothesized that post-production site elemental concen-
trations would remain elevated (e.g., Cleveland et al., 2019) relative
to the pre-production and reference sites due to the high degree of
surface disturbance at the active and post-production sites and
subsequent aeolian transport of element- and radionuclide-laden
dust into the mine surrounds. Aeolian transport and atmospheric
deposition of surficial soil, dust, and weathered rock are important
vectors for the movement of mining-related constituents off-site
and into the surrounding landscapes (Pozolotina et al., 2000;
Rickard and Garland, 1983).

An additional aim was to establish tissue concentrations across
mining life stages to support site-specific ecological risk assess-
ments within the Grand Canyon watershed. Elemental concentra-
tions in tissues are a fundamental requirement to determine
toxicity and risk to biota, but empirical data fromhistorical or active
U mines in the region are limited. However, it is important to note
that this study was intended as an exposure assessment, and not an
ecological risk assessment. Ultimately, data from this and other
studies (e.g., Cleveland et al., 2019; Hinck et al., 2017; Minter et al.,
2019) will be used to (1) determine whether changes in radiation
levels and chemical concentrations from Umining result in greater
uptake, exposure, and biological effects in biota inhabiting themine
surrounds (USDOI, 2012); and (2) inform risk assessments and
decisions on ending, extending, or modifying the mining with-
drawal on Federal lands in the Grand Canyonwatershed. Moreover,
our biological effects approach (i.e., severity scoring of lesions in
small rodents as sentinels), combined with uptake assessments,
could be applied at other sites to better evaluate the extent of the
impacts of U mining.

2. Methods

2.1. Study areas

We collected biota from active, post-production, and non-
mineralized reference sites in 2015 (Supplemental Information
[SI] Figure S1). The active production mine site (36�30011.1600 N,
112�43057.0800 W; Pinenut Mine) is located north of the Grand
Canyon in Mohave County, Arizona, approximately 56 km south of
Fredonia, AZ USA and 6 km west of Kanab Creek, a tributary of the
Colorado River. The active mine produced ore in the 1980’s, was on
standby from 1989 to 2013, and produced ore again from 2013 until
2015, when it was closed permanently. The site was actively pro-
ducing U ore during our 2015 sampling.

The post-production site (36�30027.0400 N, 112�48022.1100 W;
Arizona 1 Mine) is located in Mohave County, Arizona, approxi-
mately 56 km south of Fredonia, AZ USA and 13 km west of Kanab
Creek. The mine produced ore from 2009 to 2014, when it went on
standby status. Although production could be resumed in the
future, this site was considered a post-production (pre-
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reclamation) location in our study. Large piles of mine waste rock
were present at the post-production site during our sampling, but
all ore had been removed. No milling was performed onsite; ore
was shipped to a mill near Blanding, Utah, USA during active op-
erations at both sites.

Samples were also collected from two nearby non-mineralized
(i.e., no breccia pipe) reference locations. Little Robinson Tank
(LRT; 36�30000.9600 N, 112�50030.9600 W), located approximately
2 kmwest of the post-production site, is an earthen stock tank and
is open to grazing. The LRT reference site serves as a reference for all
biological samples except Valley pocket gophers (Thomomys bot-
tae). Only one pocket gopher was captured at LRT. Therefore, the
reference pocket gophers (n ¼ 5) were collected at Wild Band
Reservoir (36�41029.6100 N, 112�49016.8800 W), which is located
approximately 20 km north of both the post-production site and
LRT. Wild Band Reservoir has three earthen stock tanks and is also
open to grazing; the presence of trees surrounding the reservoir
indicates a more permanent source of water at this location. A pre-
production site (35�52059.300 N, 112�05046.100 W; Canyon Uranium
Mine) has been described elsewhere (Hinck et al., 2017), but the
data are included in the present paper for comparisons among
mine life stages.

2.2. Sample collection

Biota were collected following the methods of Hinck et al.
(2017); all collection, handling, and euthanasia procedures fol-
lowed animal care and use guidelines approved by the U.S.
Geological Survey (in accordance with guidelines from the National
Institutes of Health under the auspices of the National Research
Council, 2011) and allowed under Arizona Game and Fish De-
partment’s Scientific Collecting Permit (#SP715011). Digital photos
were taken of all specimens to confirm and record species identi-
fication. Collection locations were georeferenced using hand-held
global positioning system navigation units. All biota were
collected outside of the fenced mine (active and post-production
site) perimeters; collections were made within 200 m of the
mine yards. There was no perimeter at the non-mineralized refer-
ence sites; however, collections were made using the same random
approach as at the mine sites.

Vegetation (e.g., above-ground tissues: blades, stems, leaves)
was collected using a random sampling approach, identified to
species, and composited for elemental and radiochemical analyses
by functional group (i.e., forb, grass, and shrub). Vegetation
collection polygons at each site were similar to those used at the
pre-production site (Hinck et al., 2017); vegetation samples were
collected along three transects per polygon (Hinck et al., 2014;
Mann and Duniway, 2020). Composited samples consisted of a mix
of species that represented vegetation from the entire sampling
polygon (LRT reference site: n ¼ 24 each forbs, grasses, and shrubs;
pre-production site: n ¼ 3 forbs, n ¼ 24 grasses, n ¼ 24 shrubs;
active production site: n ¼ 33 each forbs, grasses, shrubs; post-
production site: n ¼ 30 each forbs, grasses, shrubs).

Ground-dwelling terrestrial invertebrates were collected using
unbaited pitfall traps; invertebrates were removed from the traps
every 1e3 days and sorted to family or order (e.g., Orthoptera,
Coleoptera, Araneae, Hemiptera) using a stereo dissecting micro-
scope. Aerial invertebrates were collected from the active and post-
production sites using two insect light traps (Universal Light Trap,
12-W black light, BioQuip, Rancho Dominguez, California, USA).
Traps were deployed from dusk to dawn for 5 consecutive nights
and were located near the containment ponds, but outside of the
northern mine perimeter fences. Trap collection funnels contained
95% ethanol as a preservative. Samples were composited by site as
needed to obtain adequate mass for elemental analyses (SI

Table S1).
Rodent species having small home ranges and high site fidelity

to the mine areas were targeted (similar to Cleveland et al., 2019;
Hinck et al., 2014, 2017). Valley pocket gophers (n ¼ 15), deer mice
(Peromyscus maniculatus; n ¼ 30), brush mice (P. boylii, n ¼ 12),
kangaroo rat (Dipodomys deserti; n¼ 9), and cliff chipmunk (Tamias
dorsalis; n ¼ 5) were collected using live traps (Sherman Traps,
Tallahassee, Florida; Havaharts®, Lititz, Pennsylvania, USA) or kill
traps (Victor® Gopher Traps, Lititz, Pennsylvania; Gophinators, East
Granby, Connecticut, USA). Kill traps were checked every 1e2 h to
collect fresh dead animals; animals captured by live trap were
euthanized (carbon dioxide). Necropsies were performed after
euthanasia or retrieval of fresh dead animals, and the livers and
kidneys were harvested. The liver and left kidney were immedi-
ately preserved in 10% neutral buffered formalin for histopatho-
logical examination. Lungs were also removed from the deer mice,
brush mice, and pocket gophers to study the effects of weathering
on elemental bioavailability and toxicity (Lowers, 2018). The
carcass-remainders (hereafter referred to as whole bodies; e.g., soft
tissues, fur, bones, teeth, gastrointestinal tracts) and right kidneys
were frozen separately for chemical analyses.

2.3. Elemental and radiochemical analyses

Samples were lyophilized and homogenized prior to elemental
and radiological analyses. Rodent tissues were analyzed individu-
ally; no compositing was performed. One deer mouse whole body
was lost during cryogrinding due to an equipment failure. There-
fore, n ¼ 12 for deer mice whole body samples at the active pro-
duction site; the corresponding kidney was retained for analysis
(n ¼ 13). The rodents were not depurated, and furs were not
washed prior to processing for analyses to better reflect rodent
exposure pathways; whole body results include contributions from
surficial dust and soil. Grooming, inhalation, dermal contact/fur
adherence during burrowing and foraging, and incidental soil
ingestion during feeding are important exposure pathways (Beyer
et al., 1994; French et al., 1965). Vegetation and invertebrate tis-
sues were also processed unwashed to reflect the dietary uptake of
the rodents and other animals.

Elemental and radiochemical analyses have been described
previously (Cleveland et al., 2019; Hinck et al., 2017). Briefly,
inductively coupled plasma-mass spectrometry (ICP-MS; Perki-
nElmer Elan DRC-e; similar to Method 6020B, USEPA, 2014)
followingmicrowave-assisted nitric acid digestion (MARS 6 Xpress;
similar to Method 3050B, USEPA, 1996) was used to quantify
environmentally available (i.e., total recoverable) As, cadmium (Cd),
Cu, Pb, Mo, nickel (Ni), thallium (Tl), thorium (Th), and U in the
samples. The total recoverable digestion procedure approximates
the bioavailable fraction (concentrations) of elements in the biota
(USEPA, 2014). Selenium concentrations were determined using
flow injection-hydride generation-atomic absorption spectropho-
tometry (FI-HG-AAS, PerkinElmer AAnalyst 400 with FIAS-400;
similar to Method 7742, USEPA, 1994) following combination wet/
dry ashing. All elemental concentrations are reported on a dry-
weight basis (mg kg�1 dw). Analytical methods for elemental an-
alyses were prioritized as ICP-MS > FI-HG-AAS; in this way, kidney
sample weights and some invertebrate sample weights that
remained after ICP-MS analyses were insufficient for Se analyses.
Further, although Se is typically accessible by ICP-MS, at the time of
analyses, the sensitivity of the laboratory ICP-MSwas insufficient to
accurately measure low-level Se. Therefore, kidney Se concentra-
tions are not reported; and invertebrate Se concentrations are re-
ported with reduced numbers of replicates (n).

Exposures of biota (vegetation and rodents) to naturally-
occurring radioisotopes that may create biological health effects
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were evaluated using standard radiochemical methods (e.g.,
Cleveland et al., 2019). Portions of the selected lyophilized rodent
whole bodies (n ¼ 29) and vegetation (n ¼ 235) were screened for
gross alpha and beta activities by gas flow proportional counting
(Method 9310, USEPA, 1986). Rodent whole body samples (n ¼ 9)
having gross alpha activity >185 Bq kg�1 dw and vegetation sam-
ples (n ¼ 43; 1 sample having the greatest mean alpha activity per
polygon) were subsequently analyzed by alpha spectroscopy for
isotopic U (U-234, U-235, U-238; USDOE, 1997), isotopic Th (Th-
228, Th-230, Th-232; USDOE, 1997), and Ra-226 (rodents only;
Maxwell and Culligan, 2012). Selection of samples for isotopic an-
alyses were also guided by elemental Th and U concentrations;
samples having Th and U concentrations <0.5 mg kg�1 dw had
radioactivity results below the reporting limits, and are generally
indicative of background (Kathren, 1984; and based on regional
statistical reference levels for vegetation and field mice at Los
Alamos National Laboratory, Fresquez and Gonzales, 2004;
Fresquez, 2016). At least one sample per site was analyzed for ra-
dioisotopes to demonstrate background radioactivity; the sample
with the greatest U concentration (or Th concentrationwhen Uwas
not detected) for that functional group or species at that site was
selected. Pre-production site values for U-238 were obtained by
gamma spectrometry instead of alpha spectrometry; no pre-
production samples had positive U-238 detections (Hinck et al.,
2017). Vegetation sampling at the pre-production site was
focused on shrubs and grasses; radioactivity was not measured in
the forbs because of limited sample size (n ¼ 3).

The estimated method quantification limits (MQL) for total
recoverable elements are in the SI, Table S2. Reporting limits (RLs)
were 150 Bq kg�1 dw for gross alpha activity, 370 Bq kg�1 dw for
gross beta activities, 37 Bq kg�1 dw for each U and Th isotope, and
18.5 Bq kg�1 dw for Ra-226. Quality control (QC) sample analyses
indicated that the elemental and radiochemical analyses were
generally in-control; a summary of the QC results is provided in the
SI.

2.4. Hepatic and renal histopathology

Histopathological examinations were intended to characterize
biological endpoints related to exposures to elements and radiation
in small rodents. Formalin-fixed liver and kidney samples were
dehydrated, embedded in paraffin, sectioned at 5 mm, stained
(hematoxylin and eosin), and examined with a light microscope
(Luna, 1968) for hepatocellular vacuolation by lipid (V-L), hepatic
inflammatory cell infiltration (PPI), renal inflammatory cell infil-
tration (INF), hepatic and renal mineralization (LMIN and KMIN,
respectively), hepatocellular degeneration or necrosis (DEG), he-
patic granulomas (GR), liver parasites (metazoan and protozoan;
PS), renal tubular regeneration (KREG), and renal tubular epithelial
karyomegaly (KARY). These lesions are potentially associated with
toxicosis and inflammatory responses (e.g., Thoolen et al., 2010).
Liver lesions PPI, DEG, and GR, and kidney lesions INF, KREG, and
KARYwere qualitatively scored as absent, mild, moderate, or severe
within the tissues. Liver lesions V-L, LMIN, and PS, and kidney
lesion KMIN, were qualitatively scored as present or absent.

2.5. Statistical analyses

All computations and statistical analyses were performed with
Version 9.4 of the Statistical Analysis System (SAS Institute, Cary,
North Carolina). Elemental and radiochemical concentrations were
statistically analyzed as dw values and were log10 transformed to
mitigate the effect of a few large values and make the comparisons
very conservative. Differences in concentrations were evaluated
with analysis of variance (ANOVA) with SAS PROC GLM. Least-

squares means (LSMs), which are adjusted for all factors in the
ANOVA models (i.e., study site; species; tissue type, whole body or
kidney; rodent sex), were evaluated as Fisher’s unrestricted least
significant difference (Saville, 1990). A conservative a-level of 0.01
was used for these comparisons to protect against experiment-wise
error (as suggested by Saville, 1990). A value of one-half the MQL or
RL was substituted for censored values in all statistical analyses. If
all samples were <MQL or < RL for a given matrix, that matrix was
excluded from the statistical analyses. Statistical comparisons
among the rodent species were not made due to differences in life
strategies (e.g., foraging and caching).

Elemental concentrations (mg kg�1 dw) and radioactivities (Bq
kg�1 dw) are reported as arithmetic means and standard errors (SE)
of all samples; pre-production site results are included for com-
parison (Hinck et al., 2017). Results for the pocket gopher from LRT
(n ¼ 1) were not included in the analyses; only gophers from Wild
Band Reservoir (n ¼ 5) were used to calculate the non-mineralized
reference mean and SE. Comparisons of elemental concentrations
between male and female rodents were performed within each
site. As previously mentioned, isotopic Th and U data were not
collected for the pre-production sitewith the exception of U-238 by
gamma spectrometry; therefore, the pre-production site was
excluded from inter-site comparisons for U-238. Concentrations
were compared to literature-based thresholds (multiple types; e.g.,
lowest observable adverse effects levels, LOAELs; reproductive ef-
fects; inhibition of chlorophyll) to assess rodent, invertebrate, and
vegetation exposures and the potential for dietary uptake. Vege-
tation and invertebrate concentrations were not explicitly used to
evaluate dietary uptake (i.e., biomagnification factors) in rodents
because rodent dietary preferences and seasonal shifts are not
well-defined for these sites, but comparisons with literature-based
dietary thresholds have been included when available. The histo-
pathology results were qualitative; no statistical comparisons were
made. The results tables in themain text have been focused on deer
mice and pocket gophers since all four site types (i.e., non-
mineralized reference, pre-production, active-production, and
post-production) are available for these species; result tables for
brush mice, cliff chipmunks, and kangaroo rats are given in the SI.

3. Results

3.1. Radiochemistry

3.1.1. Vegetation
Gross alpha activities (Table 1) were less than the RL (150 Bq

kg�1 dw) for all vegetation types at the non-mineralized reference
and pre-production sites; consequently, no isotopic U and Th ana-
lyses for the non-mineralized reference site were performed. Gross
alpha activities were not statistically different at the active and
post-production sites within each vegetation type (Table 1); like-
wise, there were no statistical differences for isotopic U or Th.
However, gross beta activities were greater at the active and post-
production sites compared to the pre-production or non-
mineralized reference site.

3.1.2. Small rodents
Gross alpha and beta activities in small rodent whole bodies

(Table 1, SI Table S3) were generally near or less than the RL (150 Bq
kg�1 dw and 370 Bq kg�1 dw, respectively) for all small rodent
species across the site types, and there were no statistical differ-
ences between site types when there were positive detections.

Isotopic U, Th, and Ra-226 results were not statistically different
in deer mice at the active and post-production sites. However, the
mean Ra-226 activity in deer mice and pocket gophers was 1.5e4
times greater than the U isotopes (U-234 and U-238) at the active
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and post-production sites (Table 1).

3.2. Elemental concentrations

3.2.1. Vegetation
Elemental concentrations differed among vegetation type and

sampling location (Table 2, SI Table S4).
Mean concentrations of U in vegetation were generally greatest

at the active production site followed by the post-production site;
concentrations were lowest at the reference and pre-production
sites. However, the limited forbs sample size at the pre-
production site (n ¼ 3) likely influenced the outcomes of the sta-
tistical comparisons for those samples. Mean U concentrations in
forbs at the active (4.34 mg kg�1 dw) and post-production sites
(1.26 mg kg�1 dw) were 4e15 times greater than the pre-
production site (0.29 mg kg�1 dw); and mean U concentrations in
grasses and shrubs were 36e244 times greater at the active and
post-production sites (1.84e12.2 mg kg�1 dw) compared to the
reference site (<0.03 mg kg�1 dw).

Similarly, mean concentrations of Cu and Mo in all 3 vegetation
functional groups were up to 4-fold greater at the active production
and post-production sites compared to the pre-production and
non-mineralized reference sites (Table 2). Concentrations of As and
Ni in grasses and shrubs were also greatest at the active and post-
production sites (0.7e2.53 mg kg�1 dw), with mean concentrations
up to 7 times greater than those at the non-mineralized reference

and pre-production sites (0.32e0.68 mg kg�1 dw). Site differences
for Cd, Pb, and Tl in grasses and Pb, Tl, and Th in shrubs were less-
pronounced; and comparisons of Se were likely confounded by the
measured concentrations having been at or near the MQL. Inter-
estingly, concentrations of As, Cd, Pb, Ni, Tl, and Th were greater in
the pre-production forbs than in the active and post-production
forbs. Similarly, Th was greatest in pre-production grasses and
shrubs, as was Cd in pre-production shrubs.

3.2.2. Invertebrates
Uranium concentrations were greatest in the aerial and terres-

trial invertebrates at the active and post-production sites, and
lowest at the pre-production site (Table 3, SI Table S5; mixed-order
compositions of the aerial and terrestrial invertebrate samples by
site are provided in Table S1). Indeed, mean U concentrations were
39e373 times greater in aerial and terrestrial invertebrates
collected at the active and post-production sites
(1.88e5.01 mg kg�1 dw U) compared to invertebrates from the pre-
production site (0.01e0.09 mg kg�1 dw U).

There were few concentration differences among sites for the
other elements in terrestrial and aerial invertebrates (Table 3).
Mean concentrations of As in aerial and terrestrial invertebrates at
the active-production site (3.46e5.70 mg kg�1 dw) were up to 5.9
times greater than As concentrations at the pre-production sites
(0.96e2.11 mg kg�1 dw). Concentrations of Cd were greatest in
terrestrial invertebrates at the pre-production site (1.86 mg kg�1

Table 1
Mean (±standard error) radioactivity results (Bq kg�1 dry weight)1 for above-ground mixed species vegetation and small rodent whole body samples from uraniummine and
reference locations. Pre-production site values (Hinck et al., 2017) are included for comparison.

Matrix, Site Gross Activities Isotopes

n Gross a Gross b n Th-228 Th-230 Th-232 U-234 U-235 U-2382 Ra-226

Vegetation
Forbs3

Non-mineralized reference 17 <150 nd 550 ± 42 a 0 nm nm nm nm nm nm nm
Active production 33 240 ± 38 a 780 ± 41 b 0 nm nm nm nm nm nm nm
Post-production 30 180 ± 26 a 750 ± 48 b 6 <37 nd 72 ± 13 nd <37 nd 50 ± 16 nd <37 nd 38 ± 15 nd nm
Grasses
Non-mineralized reference 12 <150 nd 310 ± 39 a 0 nm nm nm nm nm nm nm
Pre-production 8 <150 nd 360 ± 41 a 8 nm nm nm nm nm <1700 nd nm
Active production 33 640 ± 110 a 810 ± 80 b 10 <37 nd 130 ± 23 a <37 nd 130 ± 29 a <37 nd 120 ± 30 a nm
Post-production 30 370 ± 53 a 700 ± 64 b 9 <37 nd 79 ± 18 a <37 nd 64 ± 26 a <37 nd 62 ± 30 a nm
Shrubs
Non-mineralized reference 17 <150 nd 520 ± 57 a 0 nm nm nm nm nm nm nm
Pre-production 8 <150 nd 530 ± 55 a 8 nm nm nm nm nm <1700 nd nm
Active production 33 750 ± 110 a 1100 ± 74 b 10 <37 nd 180 ± 46 a <37 nd 180 ± 42 a <37 nd 190 ± 47 a nm
Post-production 30 460 ± 78 a 1500 ± 480 b 8 <37 nd 94 ± 27 a <37 nd 79 ± 29 a <37 nd 74 ± 28 a nm
Rodent whole bodies
Pocket gophers
Non-mineralized reference 2 <150 nd 320 ± 140 a 0 nm nm nm nm nm nm nm
Pre-production 6 <150 nd 320 ± 63 a 6 nm nm nm nm nm <2600 nd nm
Active production 2 130 ± 57 nd <370 nd 1 <37 nd <37 nd <37 nd <37 nd <37 nd 41 nd 63 nd
Post-production 1 <150 nd 380 nd 0 nm nm nm nm nm nm nm
Deer mice
Non-mineralized reference 2 <150 nd <370 nd 0 nm nm nm nm nm nm nm
Pre-production 10 <150 nd 440 ± 130 a 10 nm nm nm nm nm <2600 nd nm
Active production 7 130 ± 26 a 260 ± 46 a 3 <37 nd 26 ± 7 a <37 nd 28 ± 9 a <37 nd 41 ± 1 a 180 ± 33 a
Post-production 6 220 ± 53 a 370 ± 62 a 4 <37 nd 38 ± 7 a <37 nd 40 ± 13 a <37 nd 38 ± 13 a 110 ± 10 a

1 Means followed by a different letter are significantly different at p < 0.01 (SAS PROC GLM/LSMs); comparisons were among mine site types within each rodent species or
vegetation functional group, and n ¼ number of samples. The reporting limits were 150 Bq kg�1 dw for gross alpha and 370 Bq kg�1 dw beta activities, 37 Bq kg�1 dw for
isotopic U and Th, and 18.5 Bq kg�1 dw Ra-226. Means less than the reporting limits have at least one individual sample greater than the reporting limit. A “nd” notation
indicates that statistical differences were not determined because all measured concentrations were below the reporting limit of the data set being compared, or n¼ 1. A “nm”

notation indicates that the value was not measured. Rodent whole bodies include all tissues except livers and kidneys, which were removed for separate analyses. Lungs were
also removed from deer mice and pocket gophers for a separate study. Vegetation and rodent furs were not washed prior to processing and may include elemental con-
tributions from soil and dust. Animals were not depurated; digestive tracts may include vegetation (dietary) and soil contributions.
2 U-238 in pre-production rodents (n¼ 10 deermice and n¼ 6 pocket gophers), and vegetation samples (n¼ 8 grasses and 8 shrubs) was determined by gamma spectrometry;
no samples had positive detections. Reporting limits for gamma spectrometry were not assigned; values above are the maximum value of the “minimum detectable con-
centration” for the matrix.
3 Forbs from the pre-production site were not analyzed for radioactivities because the forbs at the pre-production site had limited sample size (n ¼ 3); sampling efforts at that
site were focused on shrubs and grasses.
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Table 2
Mean (±standard error) concentrations (mg kg�1 dry weight)1 of elements in above-groundmixed species forbs, grasses, and shrubs samples from non-mineralized reference,
active production, and post-production uranium mine sites. Pre-production mine site results (Hinck et al., 2017) are provided for comparison. A summary of literature-based
thresholds and background ranges for vegetation is provided in SI Table S13 for additional comparison.

Functional group, Element Non-mineralized reference (n ¼ 24) Pre-production (n ¼ 24)2 Active production (n ¼ 33) Post-production (n ¼ 30)

Forbs
As 0.57 ± 0.06 a 4.70 ± 1.26 c 1.58 ± 0.18 b 0.69 ± 0.07 a
Cd 0.06 ± 0.01 a 0.34 ± 0.03 b 0.07 ± 0.01 a 0.07 ± 0.01 a
Cu 7.52 ± 0.25 a 9.72 ± 1.29 ab 19.6 ± 1.42 c 10.9 ± 0.21 b
Pb 0.31 ± 0.02 a 4.68 ± 1.03 c 1.01 ± 0.19 b 0.66 ± 0.05 b
Mo 0.82 ± 0.05 a 1.00 ± 0.22 a 3.71 ± 0.36 b 3.39 ± 0.38 b
Ni 0.47 ± 0.06 a 8.23 ± 1.76 c 1.82 ± 0.12 b 1.46 ± 0.07 b
Se 0.14 ± 0.01 a 0.25 ± 0.04 abc 0.12 ± 0.01 ab 0.34 ± 0.07 c
Tl <0.03 nd 0.20 ± 0.04 b 0.02 ± 0.01 a 0.02 ± 0.01 a
Th 0.16 ± 0.02 ab 1.87 ± 0.45 c 0.21 ± 0.02 b 0.13 ± 0.01 a
U <0.03 nd 0.29 ± 0.05 a 4.34 ± 0.63 b 1.26 ± 0.23 ab
Grasses
As 0.32 ± 0.04 a 0.58 ± 0.12 ab 1.34 ± 0.15 c 0.70 ± 0.07 b
Cd <0.10 nd 0.08 ± 0.01 ab 0.15 ± 0.03 b 0.04 ± 0.01 a
Cu 3.68 ± 0.09 a 4.88 ± 0.19 a 13.2 ± 1.4 b 4.70 ± 0.21 a
Pb 0.17 ± 0.02 a 1.07 ± 0.14 c 0.73 ± 0.06 b 0.74 ± 0.07 bc
Mo 0.90 ± 0.03 a 1.56 ± 0.11 b 3.57 ± 0.39 c 3.87 ± 0.49 c
Ni 0.59 ± 0.02 a 1.98 ± 0.25 c 1.51 ± 0.13 bc 1.21 ± 0.06 b
Se 0.05 ± 0.01 a 0.17 ± 0.01 b <0.20 nd 0.23 ± 0.04 b
Tl <0.01 nd 0.04 ± 0.01 b 0.02 ± 0.01 a 0.04 ± 0.01 b
Th 0.12 ± 0.02 a 0.49 ± 0.07 c 0.15 ± 0.01 b 0.15 ± 0.01 ab
U <0.03 nd 0.05 ± 0.01 a 5.95 ± 0.95 c 1.84 ± 0.36 b
Shrubs
As 0.33 ± 0.03 a 0.68 ± 0.04 b 2.30 ± 0.30 c 1.70 ± 0.22 c
Cd 0.06 ± 0.01 a 0.28 ± 0.03 b <0.1 nd 0.07 ± 0.01 a
Cu 8.84 ± 0.35 a 9.60 ± 0.50 a 31.1 ± 3.3 c 15.0 ± 0.6 b
Pb 0.32 ± 0.02 a 0.97 ± 0.14 b 1.01 ± 0.09 b 1.74 ± 0.20 c
Mo 0.49 ± 0.02 a 0.74 ± 0.08 a 1.60 ± 0.15 b 1.67 ± 0.13 b
Ni 1.21 ± 0.07 a 1.80 ± 0.16 b 2.53 ± 0.22 c 2.52 ± 0.19 c
Se 0.10 ± 0.01 a 0.17 ± 0.02 b <0.2 nd 0.30 ± 0.05 c
Tl <0.02 nd 0.03 ± 0.01 ab 0.02 ± 0.01 a 0.04 ± 0.01 b
Th 0.11 ± 0.01 b 0.21 ± 0.02 c 0.06 ± 0.01 a 0.14 ± 0.01 b
U 0.02 ± 0.01 a 0.05 ± 0.01 b 12.2 ± 1.9 d 5.88 ± 0.94 c

1 Means followed by a different letter are significantly different at p < 0.01 (SAS PROC GLM/LSMs); comparisons were amongmine site types within each vegetation functional
group, and n ¼ number of samples. Means less than the MQL have at least one individual sample greater than the reporting limit. Vegetation was not washed prior to
processing for analyses and may include elemental contributions from soil and dust. A “nd” notation indicates that statistical differences were not determined because all
measured concentrations were below the reporting limit of the data set being compared.
2 n ¼ 3 for forbs at the pre-production site because sampling was focused on shrubs and grasses

Table 3
Mean (±standard error) concentrations (mg kg�1 dry weight)1 of elements in mixed-order aerial and terrestrial invertebrates from active and post-production uraniummine
sites. Pre-production site results (Hinck et al., 2017) are provided for comparison. A summary of literature-based toxicity thresholds and background ranges for invertebrates is
provided in SI Table S14 for additional comparison.

Element Aerial Invertebrates Terrestrial Invertebrates

Pre-production
(n ¼ 6)2

Active production
(n ¼ 5)3

Post-production
(n ¼ 9)

Non-mineralized reference
(n ¼ 1)

Pre-production
(n ¼ 12)4

Active production
(n ¼ 5)

Post-production
(n ¼ 7)5

As 0.96 ± 0.41 a 5.70 ± 1.75 b 3.46 ± 0.95 ab 3.47 nd 2.11 ± 0.29 a 5.38 ± 0.74 b 4.68 ± 1.49 ab
Cd 0.80 ± 0.22 a 0.74 ± 0.40 a 0.66 ± 0.28 a 0.32 nd 1.86 ± 0.69 b 0.17 ± 0.03 a 0.18 ± 0.06 a
Cu 23.9 ± 1.9 a 38.7 ± 7.3 a 35.8 ± 9.0 a 22.1 nd 41.5 ± 8.7 a 37.8 ± 6.4 a 24.2 ± 3.1 a
Pb 0.29 ± 0.04 a 0.49 ± 0.18 a 0.58 ± 0.14 a 1.53 nd 1.61 ± 0.16 a 1.15 ± 0.28 a 1.71 ± 0.48 a
Mo 1.09 ± 0.47 a 1.33 ± 0.22 a 1.11 ± 0.14 a 0.59 nd 0.83 ± 0.10 a 1.78 ± 0.41 a 1.49 ± 0.30 a
Ni 0.51 ± 0.08 a 1.17 ± 0.37 a 1.24 ± 0.24 a 2.06 nd 2.90 ± 0.27 a 2.81 ± 0.56 a 3.33 ± 0.84 a
Se 1.53 ± 0.18 a 0.63 ± 0.24 a 6.42 ± 3.26 a 0.40 nd 0.65 ± 0.10 a 0.56 ± 0.19 a 1.61 ± 0.91 a
Tl <0.02 nd <0.05 nd <0.05 nd <0.05 nd 0.06 ± 0.01 nd <0.05 nd <0.05 nd
Th 0.15 ± 0.06 b 0.03 ± 0.02 a <0.02 nd 0.79 nd 0.67 ± 0.08 a 0.60 ± 0.18 a 0.73 ± 0.23 a
U 0.01 ± 0.01 a 3.73 ± 2.36 b 1.88 ± 0.64 b 0.10 nd 0.09 ± 0.01 a 5.01 ± 2.06 b 3.51 ± 0.86 b

1Means followed by a different letter are significantly different at p < 0.01 (SAS PROC GLM/LSMs); comparisons were among mine site types within each invertebrate type
(aerial or terrestrial), and n ¼ number of samples. Ground-dwelling terrestrial invertebrates were collected using unbaited pitfall traps; aerial invertebrates were collected
with insect light traps and preserved in ethanol. Invertebrate samples were not depurated or rinsed prior to processing for analyses; samples may include elemental con-
centrations from surficial or ingested soil or dust. Means less than the MQL have at least one individual sample greater than the reporting limit. A “nd” notation indicates that
statistical differences were not determined because all measured concentrations were below the reporting limit of the data set being compared. Terrestrial invertebrates
collected at the non-mineralized reference site were not included in the comparison because n¼ 1 due to the need to composite multiple samples to provide sufficient weight
for all analyses.
2 n ¼ 4 for Se due to low sample weights.
3 n ¼ 4 for Se due to low sample weights.
4 n ¼ 7 for Se due to low sample weights.
5 n ¼ 6 for Se due to low sample weights.
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dw; approximately 11 times greater than the active and post-
production sites), whereas concentrations of Th were greatest in
aerial invertebrates at the pre-production site (0.15 mg kg�1 dw)
and lowest at the active production site (0.03 mg kg�1 dw).

3.2.3. Small rodents
Mean U concentrations were greatest in deer mice at the active-

and post-production sites (Table 4) and in brush mice at the active-
production site (SI Table S7); further, deer mice whole body U
concentrations at the post-production site were 1.9 times greater
than those at the active production site, and 53 to 79 times greater
than those at the reference and pre-production sites, respectively.
Mean U in brush mice whole bodies was approximately 14 times
greater at the active-production site compared to the post-
production site. There were no statistical differences among site
types for U in pocket gophers, cliff chipmunks, or kangaroo rat
whole bodies or kidneys (Table 4; SI Table S7); however, the sta-
tistical comparisons may have been limited due to the relatively
small sample sizes.

The whole body U concentrations for pocket gophers, cliff
chipmunks, and kangaroo rats at the active production site were
generally low (0.31e0.48 mg kg�1 dw; SI Table S7) compared to
whole body U concentrations for Peromyscus spp.
(0.82e1.54 mg kg�1 dw; Table 4 and SI Table S7). Deer mice whole

bodies at the post-production site also had an elevated mean U
concentration (1.59 mg kg�1 dw; Table 4) relative to the other ro-
dent species (0.11e0.33 mg kg�1 dw; Table 4 and SI Table S7).
Concentrations of U in deer mice kidneys (Table 4) were greatest at
the post-production site and were below the MQL at the pre-
production and non-mineralized reference sites. There were no
other statistical differences among sites for U in rodent kidneys.

Concentrations of the co-occurring ore body elements in rodent
whole bodies and kidneys had few differences among sites and
were generally not indicative of mine status (Table 4; SI Tables S6
and S7). Most notably, brush mice kidneys at the active produc-
tion site (0.26 mg kg�1 dw; SI Table S7) had a mean As concen-
tration that was 3-fold greater than the As concentration at the
post-production site (0.09 mg kg�1 dw; SI Table S7). Similarly,
mean Pb were 6e13 times greater in whole bodies and kidneys of
brush mice from the active production site compared to brush mice
tissues from the post-production site. Whole body concentrations
of Se were 1.4e7 times greater in deer mice at the post-production
site (7.43 mg kg�1 dw; Table 4) compared to the other sites
(0.97e1.51 mg kg�1 dw).

Concentrations of Ni in deer mice kidneys (0.75 mg kg�1 dw;
Table 4) were up to 15 times greater at the non-mineralized
reference site compared to the other sites (0.05e0.14 mg kg�1

dw), whereas the Ni concentrations of kidneys in the other rodent

Table 4
Mean (±standard error) concentrations (mg kg�1 dry weight)1 of elements inwhole bodies and kidneys of deer mice (Peromyscus maniculatus) and pocket gophers (Thomomys
bottae) from non-mineralized reference, active production, and post-production uranium mine sites. Pre-production site results (Hinck et al., 2017) are provided for com-
parison. A summary of literature-based thresholds and background ranges for small rodents is provided in SI Table S15 for additional comparison.

Element Deer mice Pocket gopher

Non-mineralized
reference (n ¼ 10)

Pre-production
(n ¼ 10)

Active production
(n ¼ 12)2

Post-
production
(n ¼ 7)

Non-mineralized
reference (n ¼ 5)

Pre-production
(n ¼ 6)

Active
production
(n ¼ 5)

Post-
production
(n ¼ 4)

As
Whole body 0.65 ± 0.09 ab <1.2 nd 0.55 ± 0.07 a 0.99 ± 0.18 b 0.34 ± 0.04 a <1.2 nd 0.59 ± 0.07 b 0.52 ± 0.03 b
Kidney 0.12 ± 0.04 a 0.11 ± 0.02 ab 0.24 ± 0.03 b 0.19 ± 0.08 ab 0.31 ± 0.02 a 0.34 ± 0.11 a 0.32 ± 0.03 a 0.39 ± 0.06 a
Cd
Whole body 0.04 ± 0.01 a 0.08 ± 0.02 a 0.04 ± 0.01 a 0.03 ± 0.01 a 0.05 ± 0.01 b 0.17 ± 0.04 c 0.02 ± 0.01 a 0.04 ± 0.01 b
Kidney 1.50 ± 0.33 a 0.89 ± 0.45 a 0.95 ± 0.32 a 0.68 ± 0.31 a 1.80 ± 0.55 a 8.55 ± 1.41 b 2.15 ± 0.47 a 3.54 ± 0.69 ab
Cu
Whole body 8.52 ± 0.37 a 10.4 ± 0.8 a 9.96 ± 0.78 a 10.1 ± 0.7 a 7.14 ± 0.42 a 7.14 ± 0.20 a 5.70 ± 0.47 a 6.34 ± 0.62 a
Kidney 19.4 ± 0.5 a 17.6 ± 0.8 a 17.5 ± 0.5 a 19.2 ± 0.8 a 12.4 ± 1.3 a 15.1 ± 0.7 a 11.3 ± 1.2 a 13.3 ± 0.5 a
Pb
Whole body 0.65 ± 0.12 ab 0.37 ± 0.10 a 0.65 ± 0.19 ab 1.68 ± 0.49 b 0.74 ± 0.13 a 0.55 ± 25 a 0.74 ± 0.13 a 1.06 ± 0.27 a
Kidney <0.04 nd 0.15 ± 0.04 a 0.70 ± 0.49 ab 0.74 ± 0.26 b 0.14 ± 0.05 a 0.08 ± 0.01 a 0.13 ± 0.02 a 0.09 ± 0.05 a
Mo
Whole body 0.70 ± 0.07 b 0.70 ± 0.04 b 0.43 ± 0.11 a 1.08 ± 0.15 b 0.09 ± 0.06 ab 0.81 ± 0.09 ac 0.33 ± 0.18 b 0.86 ± 0.20 bc
Kidney 2.54 ± 0.13 a 2.41 ± 0.11 a 2.32 ± 0.09 a 2.45 ± 0.09 a 0.97 ± 0.14 a 1.93 ± 0.18 b 1.46 ± 0.18 ab 2.42 ± 0.24 b
Ni
Whole body 1.63 ± 0.11 b 0.60 ± 0.10 a 1.77 ± 0.09 b 2.26 ± 0.17 b 1.66 ± 0.09 b 0.75 ± 0.10 a 2.46 ± 0.17 b 2.40 ± 0.23 b
Kidney 0.75 ± 0.23 b 0.05 ± 0.001 a 0.14 ± 0.06 a 0.13 ± 0.04 a 0.03 ± 0.01 a 0.08 ± 0.02 a 0.15 ± 0.08 a <0.04 nd
Se
Whole body 1.18 ± 0.06 a 1.51 ± 0.22 a 0.97 ± 0.06 a 7.43 ± 2.14 b 0.69 ± 0.03 ab 0.77 ± 0.10 ab 0.57 ± 0.04 a 1.10 ± 0.27 b
Tl
Whole body <0.05 nd 0.01 ± 0.01 a <0.03 nd 0.09 ± 0.02 b <0.02 nd 0.02 ± 0.01 nd <0.03 nd <0.02 nd
Kidney <0.02 nd 0.03 ± 0.01 a 0.02 ± 0.01 a 0.55 ± 0.12 b <0.1 nd 0.12 ± 0.08 a 0.03 ± 0.02 a <0.1 nd
Th
Whole body 0.11 ± 0.01 a 0.19 ± 0.05 a <0.5 nd 0.19 ± 0.03 a 0.07 ± 0.06 a 0.25 ± 0.05 b <0.04 nd <0.06 nd
Kidney 0.12 ± 0.02 b 0.08 ± 0.03 a <0.3 nd <0.2 nd <0.3 nd 0.05 ± 0.02 nd <0.3 nd <0.3 nd
U
Whole body 0.03 ± 0.01 a 0.02 ± 0.01 a 0.82 ± 0.20 b 1.59 ± 0.48 b <0.05 nd 0.01 ± 0.01 a 0.48 ± 0.31 a 0.33 ± 0.18 a
Kidney <0.04 nd <0.01 nd 0.12 ± 0.03 a 0.98 ± 0.38 b <0.02 nd <0.01 nd 0.03 ± 0.02 a 0.02 ± 0.01 a

1 Means followed by a different letter are significantly different at p < 0.01 (SAS PROC GLM/LSMs); comparisons were among mine site types within each rodent species, and
n ¼ number of samples. Whole bodies include all tissues except livers, kidneys, and lungs, which were removed for separate analyses. Rodent furs were not washed prior to
processing and may include elemental contributions from soil and dust. Animals were not depurated; digestive tracts may include vegetation (dietary) and soil contributions.
Comparisons among species were not made due to differences in life strategies. Means less than the MQL have at least one individual sample greater than the reporting limit.
An “nd” notation indicates that statistical differences were not determined because all measured concentrations were below the reporting limit of the data set being compared.
Concentration results for Se measured by ICP-MS in kidney tissues were too low to be reliable and are therefore not reported.
2 Onewhole body deer mouse sample from the active production site (n¼ 1 of 13) was lost during cryogrinding due to an equipment failure. The corresponding kidneywas not
removed from the dataset, and kidney n ¼ 13.
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species (Table 4; SI Table S7) had no statistical differences by site
type. Whole bodies of cliff chipmunks from the post-production
site had 5.5 times greater concentrations of Ni (1.90 mg kg�1 dw;
SI Table S7) than whole bodies from the pre-production site
(0.34 mg kg�1 dw).

There were few differences in elemental concentrations by ro-
dent sex. Male deer mice at the active production site had greater
whole body concentrations of Cd (0.06 mg kg�1 dw) than females
(0.02 mg kg�1 dw; SI Table S8). Female pocket gophers at the non-
mineralized reference site (0.34 mg kg�1 dw) had greater concen-
trations of Co in kidney tissues than males (0.11 mg kg�1 dw; SI
Table S9). Brush mice (SI Table S10), and kangaroo rats and cliff
chipmunks (SI Table S11) tissues had no statistical differences in
elemental concentrations by sex, although the comparisons were
likely limited due to low sample numbers.

3.3. Histopathology

Lesions having positive detections in the rodent liver and kidney
tissues (Table 5; SI Table S12) were V-L, PPI, LMIN, DEG, GR, PS, INF,
KMIN, KREG, and KARY. Lesions V-L (n ¼ 4), LMIN (n ¼ 4), GR
(n¼ 17), PS (n¼ 2), INF (n¼ 18), KMIN (n¼ 12), KREG (n¼ 13), and
KARY (n ¼ 5) had relatively low prevalence (present in <20% of all
rodents, total n ¼ 95 livers, n ¼ 93 kidneys). The GR lesion had 21%
prevalence, and the PPI lesion prevalence was 42%. All scored le-
sions were mild with the following exceptions: one moderate PPI
lesion in a deer mouse at the post-production site (Table 5); one
moderate KARY lesion in a deer mouse at the non-mineralized
reference; two moderate DEG lesions in non-mineralized refer-
ence pocket gophers (Table 5); one moderate GR lesion in a pre-
production pocket gopher; one severe PPI lesion in a brush
mouse at the post-production site (SI Table S12); one moderate
DEG lesion, onemoderate GR lesion, and onemoderate KARY lesion
in post-production brush mice; one moderate PPI lesion in a post-
production cliff chipmunk; and one moderate and one severe DEG
lesion in cliff chipmunks at the post-production site.

The prevalence or severity of the lesions had no consistent
pattern by site mineralization or mine life stage. For example, in-
flammatory cell infiltrates in the liver (PPI), which is typically
characterized by portal infiltrates of mononuclear cells, was the
most prevalent lesion; yet deer mice livers tended to have the PPI
lesion at varying degrees of severity regardless of mining stage. The
next most-common lesion, GR, was present in both non-

mineralized reference site rodents and rodents from the pre-
production, active production, and post-production sites.

4. Discussion

4.1. Radiochemistry

4.1.1. Vegetation
Greater gross alpha and beta activities in grasses, forbs, and

shrubs at active and post-production sites compared to pre-
production and reference sites indicates that U mining activities
have increased radioactivity on the surface of the mine sites and
their surrounds.

Similar elevated radioactivity was observed in grasses and
shrubs at a chronic exposure breccia pipe U mine site (Cleveland
et al., 2019). The gross alpha activities at the active and post-
production sites were within a range for vegetation from a U
exploration and exploitation area (48e477 Bq kg�1 dw; Pathak and
Pathak, 2012). Gross beta activities were generally within back-
ground range at all sites (Hinck et al., 2017), but the greater beta
activities at the active and post-production sites relative to the pre-
production and reference sites may be due to the presence of U
decay chain beta emitters in the ore. For example, Pb-210 is a
naturally-occurring beta emitter and radon (Rn) progeny. Elevated
Rn has been detected near the ore piles at the active production site
(Naftz et al., 2020), and aeolian transport may have moved
radionuclide-laden dust onto the mine surrounds (Bidar et al.,
2009; Pozolotina et al., 2000). We previously demonstrated that
surficial dust was the source of elevated concentrations of Ni, Pb, Tl,
and U on grasses downwind of the pre-production site (Hinck et al.,
2017).

The U-238 activities in vegetation at the active and post-
production sites were greater than a range for crops grown in soil
treated with U-containing fertilizers (0.05e0.8 Bq kg�1 dw, Al-
Masri et al., 2008). Mean U-238 in vegetation at the active and
post-production sites was generally greater than U-238 found in
grasses and forbs growing at a former Umine site (3.5e11.5 Bq kg�1

dw assuming 80% moisture; Skipperud et al., 2013). Notably, the U-
238 activities were within or above the typical range for rocks and
soils in the US (4e140 Bq kg�1 dw, NCRPM,1987). This may indicate
that the U-238 results reflect uptake of U by the vegetation and/or
dust-loading on the surfaces of the unwashed vegetation. The hy-
pothesis that our results reflect surficial dust-loading is supported

Table 5
Summary of histopathological findings1 in deer mouse and pocket gopher livers and kidneys from reference, pre-production, active production, and post-production uranium
mine sites. Data indicate the number of samples that contained lesions that were scored absent-mild-moderate-severe, or the number of samples having the lesion absent/
present.

Species, Site Liver lesions Kidney lesions

n2 V-L PPI LMIN DEG GR PS INF KMIN KREG KARY

Deer mice
Non-mineralized reference 10 10/0 3e7e0e0 10/0 10e0e0e0 8e2e0e0 10/0 6e4e0e0 9/1 6e3e1e0 10e0e0e0
Pre-production 123 11/1 11e1e0e0 12/0 9e3e0e0 12e0e0e0 12/0 10e0e0e0 10/0 9e1e0e0 9e1e0e0
Active production 134 13/0 2e11e0e0 13/0 13e0e0e0 12e1e0e0 13/0 9e4e0e0 11/2 13e0e0e0 12e0e0e0
Post-production 6 6/0 2e3e1e0 5/1 5e1e0e0 6e0e0e0 6/0 5e1e0e0 4/2 5e1e0e0 6e0e0e0
Pocket gopher
Non-mineralized reference 5 5/0 5e0e0e0 3/2 2e1e2e0 4e1e0e0 5/0 4e1e0e0 3/2 5e0e0e0 5e0e0e0
Pre-production 5 5/0 5e0e0e0 4/1 3e2e0e0 4e0e1e0 5/0 5e0e0e0 5/0 4e1e0e0 5e0e0e0
Active production 5 5/0 4e1e0e0 5/0 4e1e0e0 2e3e0e0 5/0 5e0e0e0 3/2 3e2e0e0 5e0e0e0
Post-production 4 4/0 3e1e0e0 4/0 4e0e0e0 4e0e0e0 4/0 4e0e0e0 3/1 4e0e0e0 4e0e0e0

1 V-L ¼ hepatocellular vacuolation by lipid; PPI ¼ hepatic inflammatory cell infiltration; LMIN ¼ hepatic mineralization; DEG ¼ hepatocellular degeneration or necrosis;
GR ¼ hepatic granulomas; PS ¼ liver parasites (metazoan and protozoan); INF ¼ renal inflammatory cell infiltration; KMIN ¼ renal mineralization; KREG ¼ renal tubular
regeneration; and KARY ¼ renal tubular epithelial karyomegaly.
2 n ¼ number of samples.
3 n ¼ 12 for deer mouse liver and n ¼ 10 for deer mouse kidney.
4 One deer mouse kidney at the active production site could not be scored for the KARY lesion because no medulla was present (n ¼ 12).
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by Pulhani et al. (2005), who found that a major percentage (>50%)
of total U-238, Th-232, and Ra-226 activity in wheat grain is
sequestered in the roots. In other words, translocation was likely
low, indicating an external source of the radionuclides. However,
differences in plant physiology between wheat grain and our
sample species (e.g., water and nutrient uptake rates, external
structures, growth rate, transpiration) may also have contributed.

Interestingly, a trend toward radioactive disequilibrium and
enrichment of mean Th-230 relative to U-238, by a factor of 2, was
evident in forbs at the post-production site. This could indicate that
surface weathering and fractional crystallization processes (e.g.,
Scott, 1968; Santos and Marques, 2007) occurred while the post-
production site was on standby; in this way, Th-230 would have
become more bioavailable for translocation into the above-ground
vegetation. However, plant Th concentrations are generally thought
to be not dependent on soil Th (Sheppard et al., 1989), so the forbs
may have unique physiological processes and external structures
(e.g., stellate hairs, petals) that permitted them to surficially trap
and retain weathered dust. Alternately or in addition, the different
mixtures of species collected at each site (Hinck et al., 2014; Mann
and Duniway, 2020) may have also contributed.

4.1.2. Small rodents
The results for gross alpha and beta activities in rodent whole

bodies indicate that life history strategies affect rodent exposure to
radioactivity and radioisotopes.

For example, there were no statistical differences in gross alpha
activities among site types for pocket gophers (Table 1), whereas
the mean alpha activity in deer mice at the post-production site
(220 Bq kg�1 dw, Table 1) was approximately 2 times greater than
the means at the other sites. This may reflect differences in dietary
preferences or grooming habits for pocket gophers and deer mice
(e.g., Hanson and Miera, 1978). Gophers are strict herbivores that
spend much time underground eating the roots and fleshy parts of
vegetation, whereas deer mice forage above ground, and have an
omnivorous diet that changes seasonally. Although gophers might
be exposed to U sequestered in the roots of vegetation, deer mice
and their food caches would likely be subject to more blowing dust
from ore and waste piles, thereby enhancing the opportunity for
incidental ingestion of soils with elevated concentrations of
mining-related elements. However, the small samples sizes may
have confounded site comparisons.

As previously mentioned, Ra-226 activity in deer mice was
approximately 3e4 times greater than the U-234 and U-238 ac-
tivities (Table 1). Cloutier et al. (1985) demonstrated transfer of Ra-
226 from soil and vegetation into meadow vole gut, skin, and bone;
this indicates that, as a carcinogen, Ra-226 could have greater
health effects than U in small rodents. However, Ra-226 concen-
trations up to 4 times those of U do not intrinsically equate to
radiotoxicity; and dose calculations (RESRAD-BIOTA; Minter et al.,
2019) indicated that the total radioactivity doses to our rodents
did not exceed the U.S. Department of Energy’s average dose
criteria rate of 1 mGy d�1.

4.2. Elemental concentrations

4.2.1. Vegetation
Elemental concentrations were nearly always greater at the

mineralized breccia pipe sites, regardless of mine production stage,
compared to the non-mineralized reference site (Table 2). Mining
activities at the active and post-production sites appear to have
resulted in elevated (relative to the pre-production site) concen-
trations of U (forbs, grasses, shrubs), As (grasses, shrubs), Cd (grass),
Cu (forbs, grasses, shrubs), Mo (forbs, grasses, shrubs), Ni (shrubs),
Pb (shrubs), and Se (shrubs). This suggests that these elements,

particularly U, Cu, and Mo, represent an active or recent U mining
signature; a similar signature for U, Co, and Pb was observed at a
chronic U exposure site (Cleveland et al., 2019).

However, there were also instances where the elemental con-
centrations were greatest at the pre-production site compared to
the active or post-production sites. While these greater elemental
concentrations cannot be directly tied to ore production, differ-
ences may reflect anthropogenic activities at the site (i.e., surface
clearing, scraping, bulldozing) related to mine site preparation and
subsequent increased dust loads of mineralized soils on the vege-
tation (e.g., Bidar et al., 2009; Hinck et al., 2017). In addition, some
elemental differences may represent differences in natural miner-
alization (Van Gosen, 2016) or differences in soil chemistry (e.g.,
pH, presence of ligands, elemental speciation; Violante et al., 2010)
among the pre-, active, and post-production sites.

Moreover, different dominant plant species were collected at
each site (Mann and Duniway, 2020), which may have influenced
the measured elemental concentrations. For example, shrub spe-
cies like sagebrush and rubber rabbitbrush (the latter of which was
found to be more prevalent at the pre-production site) may have
retained greater loads of depositional soil and dust via trichomes
and flower structures, respectively, which might have increased
concentrations of soil-associated elements (e.g., As, Pb, Ni, Th) in
our unwashed vegetation samples relative to grasses or other
species lacking these structures (Hinck et al., 2017). In addition,
atmospheric deposition of elements in dust may have permitted
foliar uptake (Kataba-Pendias and Pendias, 2001).

Additional factors affecting elemental differences among vege-
tation species include elemental bioavailability, binding of dis-
solved or complexed elements by absorption, species selectivity for
specific ions, nutrient cycling and root uptake, and translocation
and sequestration (Kataba-Pendias and Pendias, 2001). One
example of differential uptake of elements in vegetation is Mo and
Cu in sagebrush (Artemisia tridentata; Rickard and Van Scoyoc,
1984); Mo applied to the soil was shown to be readily trans-
located sagebrush leaves whereas Cu was not translocated. The
exact mechanism for the observed differences is not known, but the
Mo concentrations remained elevated in the sagebrush leaves for 2-
years post application to the soil. In this way, ingested vegetation
that contains translocatedMo (or other elements) could represent a
dietary exposure pathway for elements in herbivores, omnivores,
and grazers.

Mean U concentrations in vegetation at the non-mineralized
reference site were generally near a literature background range
(0.002e0.015 mg kg�1 dw; Gramss and Voigt, 2014). However, U
was greater than literature-based background concentrations at the
pre-production, active, and post-production sites, ranging from 3x
background at the pre-production site to 800x background at the
active production site. Further, mean U concentrations in grasses
from active production site and shrubs from active and post-
production sites exceeded a soil-screening benchmark of
5 mg kg�1 dw (Efroymson et al., 1997). By plant functional group,
n ¼ 16 of 33 grasses, n ¼ 20 of 33 shrubs, and n ¼ 13 of 33 forbs
samples at the active production site, and n¼ 3 of 30 grasses, n¼ 13
of 30 shrubs, and n ¼ 1 of 30 forbs at the post-production site
exceeded this benchmark (https://doi.org/10.5066/P94OVQO9);
shrubs at both sites had the highest rates of exceedance.

Concentrations of As, Cd, Cu, Pb, Ni, Se, and Tl in vegetationwere
generally within literature background ranges and did not exceed
literature-based thresholds (SI Table S13), with a few exceptions for
As, Cu, and Ni. For example, we noted that the literature-based
background range for As (1e22 mg kg�1 dw; Kataba-Pendias and
Pendias, 2001; Ollson et al., 2009) overlaps a phytotoxicity range
(1e20 mg kg�1 dw) that results in 10% yield depression of sensitive
agricultural crops and fruit tree leaves (Kataba-Pendias and
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Pendias, 2001). Mean As concentrations in forbs (pre- and active
production), grasses (active production), and shrubs (active and
post-production) were 1e5 mg kg�1 dw, exceeding the lower end
of that phytotoxicity range. No As concentrations in vegetation
exceeded a dietary threshold (28 mg kg�1 dw) that results in tissue
damage in bank voles (Clethrionomys glareolus; Griffin et al., 2001).

Similarly, mean Cu concentrations in shrubs at the active pro-
duction site (31.1 mg kg�1 dw; Table 2) and Ni in forbs at the pre-
production site (8.23 mg kg�1 dw) exceeded literature back-
ground ranges (SI Table S13; Cu: 2e20 mg kg�1 dw, Gramss and
Voigt, 2014 and references therein; Ni: 0.1e3 mg kg�1 dw,
Gramss and Voigt, 2014 and references therein; Rashed, 2010). The
Cu concentrations in shrubs at the active production site also
exceeded a dietary threshold that reduced moth (Spodoptera litura)
pupation and emergence rates (25 mg kg�1; Huang et al., 2012) and
a threshold that reduced yields of spring barley (20 mg kg�1 dw;
Hordeum vulgare; Davis et al., 1978). Mean Mo concentrations in
forbs and grasses at the active and post-production sites exceeded a
soil-screening benchmark of 2mg kg�1 dw (Efroymson et al., 1997);
however, this benchmark is within a range forMo in vegetation that
is considered to be nontoxic to grazing animals (0.01e21 mg kg�1

dw, Kataba-Pendias and Pendias, 2001).

4.2.2. Invertebrates
Our results indicate that anthropogenic activities associated

with active and recent U ore production can result in greater con-
centrations of As and U in aerial and terrestrial invertebrates
(Table 3).

Notably, mean U concentrations in both aerial and terrestrial
invertebrates at the active and post-production sites were similar
to those in Coleoptera collected at a U production site
(0.68e3.54 mg kg�1; Gongalsky, 2006), whereas U concentrations
in invertebrates at the non-mineralized reference and pre-
production sites were within a background range for U in weaver
ants (Oecophylla smaragdina; <0.01e0.17 mg kg�1 dw; Doering and
Bollh€ofer, 2016). Aerial and terrestrial invertebrate elemental up-
take and exposure are generally accepted to be closely linked to
trophic transfer, depuration, sub-cellular sequestration, elemental
speciation and bioavailability, and other physiological and species-
specific biochemical processes (Morgan et al., 2007; Skip et al.,
2014). In this way, the different invertebrate orders and resultant
composite samples collected at each site (SI Table S1) may have
influenced the results. Our terrestrial invertebrates were analyzed
unwashed; therefore, the samples may have included surficial soil
and dust as a source of the measured elements. In contrast, the
external surfaces of the aerial invertebrates were likely rinsed by
the ethanol in the light traps, thereby reducing or eliminating the
external soil and dust loads in the aerial tissues. The elevated U and
As concentrations in aerial invertebrates may indicate that external
soils and dust were not the sole source of elements in our inver-
tebrate samples; aerial and terrestrial results likely included di-
etary exposure and bioaccumulation.

There are few available protective thresholds for elements that
are based on body burdens for invertebrates (SI Table S14); few
were exceeded in our study. At the pre-production site, n¼ 3 of 4 Se
concentrations in aerial invertebrates (https://doi.org/10.5066/
P94OVQO9) exceeded the lower end of a dietary threshold range
(1.4e6.6 mg kg�1 dw Se) causing sublethal effects in rats (e.g.,
reduced longevity, reproductive selenosis, reduced growth, renal
damage; Halverson et al., 1966; USDOI, 1998). In terrestrial inver-
tebrate samples, n ¼ 2 of 7 concentrations (2.28 mg kg�1 dw and
6.84 mg kg�1 dw; https://doi.org/10.5066/P94OVQO9) exceeded Se
thresholds at the post-production site; and n ¼ 4 of 8 aerial mixed-
order samples had Se concentrations (3.69, 3.76, 15.1, and
25.8 mg kg�1 dw) that exceeded one or more Se toxicity thresholds

(i.e., 1.4e6.6 mg kg�1 dw Se for sublethal effects in rats, Halverson
et al., 1966, USDOI, 1998; 2.5e15 mg kg�1 dw Se for growth effects
in invertebrates, USDOI, 1998; 3.75 mg kg�1 dw assuming 80%
moisture as a risk threshold for the entire food web in the Colorado
River, Walters et al., 2015). However, the typical background range
for Se in terrestrial invertebrates (0.1e2.5 mg kg�1 dw; USDOI,
1998) overlaps these thresholds. The greatest Se concentrations
(>6 mg kg�1 dw Se) were in ants (Hymenoptera) and Dipterans at
the post-production site (https://doi.org/10.5066/P94OVQO9). As
previously mentioned, the differences in species collected at each
site and the resultant composites may have influenced the results.
Alternately or in addition, Se (and As) concentrations were previ-
ously linked to the aquatic exposure pathway at the pre-production
site (Hinck et al., 2017); therefore, the containment ponds at the
active and post-production sites may have been a source of dis-
solved elements for uptake by aerial invertebrates.

Studies have indicated that local invertebrate populations may
be element-tolerant, with tissue accumulation having no effect on
the invertebrate development into adulthood (Greville and
Morgan, 1991; Jaffe et al., 2019; Tollett et al., 2009). Further, Cu
and other nutrients are likely regulated by physiological processes
(Grze�s, 2012). While mining-related elements may not directly
impact invertebrate populations, Se, Cu, and other elements can be
bioaccumulated and biomagnified (Cheruiyot et al., 2013; Hopkins
et al., 2005), which may increase uptake and exposure of omniv-
orous and insectivorous predators. In this way, it may be prudent
for land managers to use invertebrates as biomonitors of adverse
conditions, particularly for assessing risk to invertivores or
omnivores.

4.2.3. Small rodents
The statistically greater concentrations of U inwhole bodies and

kidney tissues of deer mice and brush mice at the active and post-
production sites compared to the pre-production and non-
mineralized reference sites indicate that these species have been
exposed to U associated with mining.

Pocket gophers, cliff chipmunks, and kangaroo rats appear to
have received less exposure. Moreover, the exposure and uptake of
U in brush mice appears to have attenuated once the post-
production site was placed on standby (i.e., U concentrations in
whole body brush mice were lower at the post-production site
compared to the active site).

The kidney and bones are generally thought to be primary tar-
gets for U toxicity and accumulation; the mean U concentrations in
our rodent kidneys were generally less than U concentrations in
whole bodies. This may suggest that the primary source of U in the
whole body samples was (1) the bones, or (2) fur-borne soils and
dust; alternately, ingested soils may have contained U species that
are not bioavailable for kidney uptake (e.g., U bound in siliceous
minerals would not be expected to be accessible to gastric juices;
soil particle size effects; Jovanovic et al., 2012 and references
therein). Although some studies indicate that age or sex of our
sampled rodents may have influenced the statistical differences
observed for the elemental concentrations (e.g., Blagojevi�c et al.,
2012; Zarrintab and Mirzaei, 2017), we found few statistical dif-
ferences by sex (SI Tables S8-11). This may be due to relatively low
sample numbers; we did not consider the ages of our sampled
rodents when determining mean concentrations for the same
reason.

Tissue-based (whole body or kidney) concentration thresholds
and literature-based ranges for the small rodent species that we
studied are relatively limited. Most thresholds are based on a daily
uptake rate; dose response and risk assessment are beyond the
scope of this study. The mean U concentration in kidneys of deer
mice at the post-production site (0.98 mg kg�1 dw) was just below
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a lowest-observed effect concentration (LOEC) range for renal
damage in rats (1e3.5 mg kg�1; Diamond et al., 1989; Gilman et al.,
1998a); individually, n ¼ 3 of 7 deer mice kidneys had a U con-
centration >1 mg kg�1 dw (https://doi.org/10.5066/P94OVQO9). A
kidney concentration of 0.2mg kg�1 dwU (assuming 80%moisture)
is a LOEC for histopathological changes in the renal tubular nuclei of
rabbits (Gilman et al., 1998b); n ¼ 2 of 12 deer mice kidneys at the
active production site, n ¼ 5 of 7 deer mice kidneys at the post-
production site, and n ¼ 1 of 5 cliff chipmunk kidneys at the
post-production site exceeded this 0.2 mg kg�1 dw U threshold
(https://doi.org/10.5066/P94OVQO9). Concentrations of
0.16 mg kg�1 dw U in wood mice (Apodemus sylvaticus) exposed to
mine wastes and contaminated waters from an abandoned U mine
had loss of DNA integrity in blood cells, up-regulation of the tumor
suppressor gene P53 (Lourenço et al., 2013); our mean kidney
concentrations of U in deer mice (post-production site), brush mice
(active-production site), and kangaroo rats (active and post-
production) all exceeded this sublethal threshold.

Concentrations of Cd, Pb, and Se in rodent whole body and
kidney tissues (Table 4; SI Table S7) did not exceed literature-based
toxicity thresholds (SI Table S15) at any of the sites. Moreover, mean
concentrations of As, Cd, Mo, Se, and Tl were generally within
literature-based background ranges (i.e., concentrations in animal
tissues collected from areas not associated with Umining or having
no mineralization; SI Table S15).

In all rodent species, Cd, Cu, and Mo were concentrated in the
kidney relative to the whole bodies; the kidneys are a known target
organ for Mo- and Cd-induced toxicity, and exposure to excessive
Cu can cause kidney damage and other adverse health effects (e.g.,
RAIS, 2020). However, while the kidney is also a known target of As,
Pb, and Ni, themean concentrations of these elements in the rodent
whole bodies were similar to or greater than the concentrations in
the kidneys. This may suggest fur-borne soils and dust are the
primary source of As, Pb, and Ni in our rodent samples; Pb may also
be associated with bones and teeth in the whole body samples.
Alternately, or in addition, the speciation of these elements may be
less nephrotoxic than dissolved or other more bioavailable species,
or the elemental dosages were sufficiently low for renal biotrans-
formation and elimination.

As previously mentioned for U, co-occurring ore body element
uptake mechanisms in rodents likely included dietary exposure to
translocated or surficial elements in or on vegetation, direct soil
exposure by dermal contact and accumulation in the fur, and
incidental ingestion of soil on external surfaces of foodstuffs or via
grooming. In this way, the observed elemental variations among
rodent species likely reflect differences in dietary preferences, life
history strategies (e.g., foraging, caching), and habitat preferences
(e.g., vegetation cover) (Gottesman et al., 2004; Hanson and Miera,
1978; Vander Wall et al., 2001). Similarly, differences in availability
of dietary items (e.g., vegetation species differences) at each site
may have contributed to differences in element burdens in rodent
whole bodies and kidneys (Everett et al., 1978; Heikens et al., 2001).

4.3. Histopathology

Pathological effects of U and co-occurring metals and radiation
on the liver and kidney have been reported in various species (e.g.,
Cooke, 2011; Morley, 2012) and include many of the changes
assessed in the current study (e.g., tubular degeneration, kidney
inflammation). For example, rats exposed to dietary Cu
(>100 mg kg�1 day�1) have exhibited liver degeneration, kidney
necrosis, and associated inflammatory responses (Haywood, 1985;
Rana and Kumar 1978). Lourenço et al. (2013) found that woodmice
exposed to mine wastes and contaminated waters from an aban-
doned U mine had loss of DNA integrity in blood cells, up-

regulation of the tumor suppressor gene P53. Indirect effects,
such as immunosuppression leading to an increased rate and
severity of parasitism (Maslov et al., 1967; Silverman et al., 1969),
are also possible. These effects are not necessarily specific to
elemental exposure and could also result fromvarious other causes,
including other toxicoses and infectious organisms. These micro-
scopic changes, particularly when mild, can also be present at
background levels in healthy or reference populations (e.g., Tête
et al., 2014).

In this study, the majority of microscopic lesions were mild
(Table 5; SI Table S12). Furthermore, some lesions were more or
equally prevalent in rodents from reference or pre-production sites
compared to active or post-production sites. For example, the DEG
lesion occurred in 20e23% of rodents from all site types. The PPI
lesion occurred in 47% of non-mineralized reference animals, 62%
of active production animals, and 54% of post-production animals
compared to 4% of pre-production animals. These findings indicate
that in most cases, we were observing normal fluctuations of
microscopic lesions in wild rodent populations (i.e., background;
Thoolen et al., 2010) rather than lesions occurring due to exposure
to elements or radiation. The animals appeared healthy and
abundant at our study sites; however, the relatively short lifespans
(1e2 years) of these species may have reduced the opportunity for
the lesions to increase in severity; or the animals may have adapted
to the natural radiation and mineralization at the sites over gen-
erations (e.g., Kudyasheva et al., 2007).

A similar observation showing increased prevalence of hepatic
inflammation and granulomas in mice from a chronic exposure site
versus a pre-production site was reported by Cleveland et al.
(2019). In that work, concentrations of U, Cd, Ni were significantly
greater in rodent whole bodies collected at a low-dose chronic U
exposure site compared to a pre-production site; U was also greater
in kidney tissues from the chronic exposure site. However,
Cleveland et al. (2019) did not include the non-mineralized refer-
ence site for comparison. Animals having close contact with
radionuclide-contaminated soil (e.g., voles, shews) had greater
prevalence of ectoparasite infection than animals from non-
contaminated areas (Maslov et al., 1967); therefore, the preva-
lence of PPI in the livers may indicate a general immune response
(Cattley and Cullen, 2013). In addition, liver gene expression effects
related to lipid metabolic processes and suppressed immune re-
sponses have been observed in bank voles (Myodes glareolus)
exposed to low-dose radionuclides (Kes€aniemi et al., 2019). These
effects could also be due to parasitic host and environmental fac-
tors, such as increased susceptibility to infections or increased
exposure to infectious organisms due to ecological disturbance at
developed (i.e., pre-, active, and post-production) sites.

Overall, the mild and inconsistent prevalence (by site) of most
lesions indicates a lack of direct biological effects of mining expo-
sure in the examined animals. There is evidence that metal-
lothioneins mitigate pathological injuries (e.g., nephrotoxicity) in
mice exposed to depleted U; biological detoxification and clearance
mechanisms may account for the lack of direct effects (Hao et al.,
2015). Similarly, gut microbiota may act as a barrier to limit the
uptake of elements by rodents chronically exposed to dietary
sources of Pb and Cd (Breton et al., 2013). The histopathological
effects observed were mild or indirect; therefore, examination of a
larger number of animals may be necessary to detect significant
differences among sites.

5. Conclusions

The results presented here indicate that small rodents, in-
vertebrates, and vegetation have been exposed to and taken up
mining-related elements and radioisotopes at active and post-
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production U mine sites (most notably As, Co, Pb, Ni, U, and gross
beta activity) relative to non-mineralized reference sites, and in
some cases, to pre-production sites (e.g., Cu, Mo, U). However, few
protective thresholds were exceeded, and microscopic examina-
tions of liver and kidney tissues revealed no clear, direct biological
effects of U mining on small rodents. Our results, along with the
relatively small footprint of breccia pipe uranium mines and the
ease at which species were collected, indicate that population-level
impacts are unlikely for rodents.

Nevertheless, these results may assist land managers in making
decisions about relative U mining risks, approaches to site reme-
diation, and resource protection. Our data indicate that land man-
agers might consider a number of factors when determining breccia
pipe site permitting, remediation, and restoration activities in the
Grand Canyonwatershed. For example, the interspecies differences
in both small rodent whole body and kidney burdens are likely due,
in part, to differences in physiology, foraging behaviors, dietary
preferences, and the site-specific bioavailability of elements in the
preferred habitat (Hickey et al., 2001; Pereira et al., 2006; Sample
et al., 2014). Seasonal changes in element and radioisotope
bioavailability, effects of precipitation andwind, soil conditions and
leaching, plant uptake and bioconcentration, and animal foraging
and caching behaviors may be worth further consideration (e.g.,
Alfani et al., 1996; Bidar et al., 2009; Erry et al., 1999).

This study focused primarily on terrestrial exposure, but aquatic
pathways provide an important route for biomagnification of
mining-related elements at these sites (Hinck et al., 2017). Wewere
unable to directly study the containment ponds at these sites
beyond locating aerial invertebrate traps as close as possible to the
ponds from outside the fenced perimeters. In this way, the effects of
active and post-production U mining on the aquatic food web at
breccia pipe sites in the Grand Canyon watershed remains largely
unknown in terms of elemental and radiochemical characteriza-
tion, exposure, and uptake.

Further, ruminants and humansmay have different toxicological
thresholds than the small rodents studied here (G�al et al., 2008);
effects on grazers should be studied if reclaimed lands are to be
reopened to public grazing. Toxic effects (e.g., survival, abundance)
may also be greater in taxa with longer natal dispersal distances
and in taxawith higher population densities (Møller andMousseau,
2011). Moreover, our comparisons to literature-based thresholds
only consider a single element at a time; theremay be shifts toward
enhanced toxicity in the presence of multiple elements (Wallace
and Berry, 1983).

Our data indicates that dust-loading on vegetation surfaces was
a likely source of elevated concentrations of As, Cd, Pb, Ni, Th, U, and
gross beta activity. Breccia pipe sites tend to be highly disturbed,
even while in the pre-production stage. Therefore, it may be
important to establish practices that stabilize breccia pipe sites and
reduce blowing dust, especially during active ore production and
site reclamation. Strategies might include the use of chemical dust
reduction agents (Petavratzi et al., 2005), biocrust inoculations (e.g.,
Belnap and Büdel, 2016), or phytostabilization (Mendez and Maier,
2008). However, it will be important to avoid orminimize the use of
approaches that might solubilize the U and co-occurring elements
or radionuclides (e.g., direct watering of surface operations for dust
control) and subsequently increase bioavailability (e.g., efflorescent
salts). Further, during site reclamation, it will be important for land
managers to select vegetation species that sequester elements and
radionuclides in the roots such that dietary uptake and bio-
accumulation of elements by animals consuming vegetation grown
atop former mine sites is minimized (e.g., Sorensen et al., 2009).
Reclamation strategies that have the potential to improve reseeding
success, such as the use of connectivity modifiers, may also be
useful (Fick et al., 2016). Uptake and translocation in cultural

resources, medicinal or ceremonial plants, and agricultural crops
should also be considered, and elemental and radionuclide loads
might usefully be extrapolated to human uptake and effects (e.g.,
inhalation, ingestion, and dermal exposures; Samuel-Nakamura
et al., 2019).
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