205 research outputs found

    The Accuracy of Confidence Intervals for Field Normalised Indicators

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Journal of Informetrics on 07/04/2017, available online: https://doi.org/10.1016/j.joi.2017.03.004 The accepted version of the publication may differ from the final published version.When comparing the average citation impact of research groups, universities and countries, field normalisation reduces the influence of discipline and time. Confidence intervals for these indicators can help with attempts to infer whether differences between sets of publications are due to chance factors. Although both bootstrapping and formulae have been proposed for these, their accuracy is unknown. In response, this article uses simulated data to systematically compare the accuracy of confidence limits in the simplest possible case, a single field and year. The results suggest that the MNLCS (Mean Normalised Log-transformed Citation Score) confidence interval formula is conservative for large groups but almost always safe, whereas bootstrap MNLCS confidence intervals tend to be accurate but can be unsafe for smaller world or group sample sizes. In contrast, bootstrap MNCS (Mean Normalised Citation Score) confidence intervals can be very unsafe, although their accuracy increases with sample sizes

    Healthcare expenditure on Indigenous and non-Indigenous Australians at high risk of cardiovascular disease

    Get PDF
    Background: In spite of bearing a heavier burden of death, disease and disability, there is mixed evidence as to whether Indigenous Australians utilise more or less healthcare services than other Australians given their elevated risk level. This study analyses the Medicare expenditure and its predictors in a cohort of Indigenous and non-Indigenous Australians at high risk of cardiovascular disease. Methods: The healthcare expenditure of participants of the Kanyini Guidelines Adherence with the Polypill (GAP) pragmatic randomised controlled trial was modelled using linear regression methods. 535 adult (48% Indigenous) participants at high risk of cardiovascular disease (CVD) were recruited through 33 primary healthcare services (including 12 Aboriginal Medical Services) across Australia. Results: There was no significant difference in the expenditure of Indigenous and non-Indigenous participants in non-remote areas following adjustment for individual characteristics. Indigenous individuals living in remote areas had lower MBS expenditure (932peryearP<0.001)thanotherindividuals.MBSexpenditurewasfoundtoincreasewithbeingagedover65years(932 per year P< 0.001) than other individuals. MBS expenditure was found to increase with being aged over 65 years (128, p=0.013), being female (472,p=0.003),lowerbaselinereportedqualityoflife(472, p=0.003), lower baseline reported quality of life (102 per 0.1 decrement of utility p=0.004) and a history of diabetes (324,p=0.001),gout(324, p=0.001), gout (631, p=0.022), chronic obstructive pulmonary disease (469,p=0.019)andestablishedCVDwhetherreceivingguidelinerecommendedtreatmentpriortothetrial(469, p=0.019) and established CVD whether receiving guideline-recommended treatment prior to the trial (452, p=0.005) or not (483,p=0.04).Whencontrollingforallothercharacteristics,morbidlyobesepatientshadlowerMBSexpenditurethanotherindividuals(483, p=0.04). When controlling for all other characteristics, morbidly obese patients had lower MBS expenditure than other individuals (-887, p=0.002). Conclusion: The findings suggest that for the majority of participants, once individuals are engaged with a primary care provider, factors other than whether they are Indigenous determine the level of Medicare expenditure for each person. Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN 126080005833347

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention

    Get PDF
    Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Estimating pore pressure in the Cooper Basin, South Australia: sonic log method in an uplifted basin

    No full text
    The use of sonic log data to analyse overpressure in the Cooper Basin, South Australia is complicated by the occurrence of Tertiary uplift in the basin. Uplift and overpressure are both associated with anomalous porosity/depth relationships: the former being witnessed by overcompaction and the later by undercompaction. Hence uplift may mask overpressure effects on log data. A normal compaction trend was determined for the Cooper Basin by averaging sonic log data from 29 wells. The Maree Subgroup was omitted from the normal compaction trend because it has a markedly different sonic log signature. Shale sequences were isolated for study by applying a gamma ray filter (API > 100). In order to remove the effects of uplift, the normal compaction trend was adjusted to fit the trend of the upper, normally pressured part of the sequence in each well. Quantitative pore pressure analysis was undertaken on shale sequences from 8 wells using the Eaton (1972) method once the effect of uplift had been removed. The predictions of the Eaton (1972) method are consistent with pressure measurements (DSTs and mud weights) in sandstones in 7 of the 8 wells, suggesting that both uplift and overpressure have been successfully determined. Assuming that the shales at Moomba 55 are overpressured, as suggested by the Eaton (1972) method, these shales must be isolated from adjacent near normally pressured sandstones. Furthermore mud weights, which are only at best an approximation of formation pressure, are especially unreliable in overpressured shales adjacent to near-normally pressured sandstones.Peter van Ruth and Richard Hilli

    Detecting overpressure using porosity-based techniques in the Carnarvon Basin, Australia

    No full text
    Overpressure has been encountered in many wells drilled in the Carnarvon Basin. Sonic logs are used to estimate pore pressure in shales in the Carnarvon Basin using the Eaton and equivalent depth methods of estimating pore pressure from velocity data with reference to a normal compaction trend. The crux of pore pressure estimation from the sonic log lies in the determination of the normal compaction trend, i.e. the acoustic travel time (Δt)/depth (z) trend for normally pressured sediments. The normal compaction trend for shales in the Carnarvon Basin was established by fitting an Athy-type exponential relationship to edited sonic log data, and is: Δt = 225 + 391exp(-0.00103z) Vertical stress estimates are also needed for the Eaton and equivalent depth methods used herein. A vertical stress (σv) relationship was obtained by fitting a regression line to vertical stress estimates from the density log, and is: σv = 0.0131 z1.0642 The Eaton and equivalent depth methods yield similar pressure estimates. However, the equivalent depth method can only be applied over a limited range of acoustic travel times, a limitation that does not apply to the Eaton method. The pressure estimates from the Eaton method were compared to pressures measured by direct pressure tests in adjacent permeable units. There is a good correlation between Eaton and test pressures in normally pressured intervals in three wells and overpressured intervals in two wells. Eaton pressure estimates underestimate overpressured direct pressure measurements in four wells by up to 13 MPa. This is consistent with overpressure being generated (at least in part) by a fluid expansion mechanism or lateral transfer of overpressure. The Eaton pressures in one well are, on average, 11 MPa lower than hydrostatic pore pressure recorded in direct pressure measurements below the Muderong Shale. The sediments in this well appear to be overcompacted due to exhumation. Mud weights can be used as a proxy for pore pressure in shales where direct pressure measurements are not available in the adjacent sandstones. The Eaton pressure estimates are consistent with mud weight in the Gearle Siltstone and Muderong Shale in 4 of the 8 wells studied. The Eaton pressures are on average 10 Mpa in excess of mud weight in the Muderong Shale and Gearle Siltstone in three wells. It is unclear whether the predicted Eaton pressures in these three wells accurately reflect pore pressure (i.e. the mud weights do not accurately reflect pore pressure), or whether they are influenced by changes in shale mineralogy (because the gamma ray filter does not differentiate between shale mineralogy).</jats:p

    Fault reactivation potential during CO2 injection in the Gippsland Basin, Australia

    No full text
    Copyright © 2006 Australian Society of Exploration GeophysicistsThe risk of fault reactivation in the Gippsland Basin was calculated using the FAST (Fault Analysis Seal Technology) technique, which determines fault reactivation risk by estimating the increase in pore pressure required to cause reactivation within the present-day stress field. The stress regime in the Gippsland Basin is on the boundary between strike-slip and reverse faulting: maximum horizontal stress (~40.5 MPa/km) > vertical stress (21 MPa/km) ~ minimum horizontal stress (20 MPa/km). Pore pressure is hydrostatic above the Campanian Volcanics of the Golden Beach Subgroup. The NW-SE maximum horizontal stress orientation (139ºN) determined herein is broadly consistent with previous estimates, and verifies a NW-SE maximum horizontal stress orientation in the Gippsland Basin. Fault reactivation risk in the Gippsland Basin was calculated using two fault strength scenarios; cohesionless faults (C = 0; m = 0.65) and healed faults (C = 5.4; m = 0.78). The orientations of faults with relatively high and relatively low reactivation potential are almost identical for healed and cohesionless fault strength scenarios. High-angle faults striking NE-SW are unlikely to reactivate in the current stress regime. High-angle faults oriented SSE-NNW and ENE-WSW have the highest fault reactivation risk. Additionally, low-angle faults (thrust faults) striking NE-SW have a relatively high risk of reactivation. The highest reactivation risk for optimally oriented faults corresponds to an estimated pore pressure increase (Delta-P) of 3.8 MPa (~548 psi) for cohesionless faults and 15.6 MPa (~2262 psi) for healed faults. The absolute values of pore pressure increase obtained from fault reactivation analysis presented in this paper are subject to large errors because of uncertainties in the geomechanical model (in situ stress and rock strength data). In particular, the maximum horizontal stress magnitude and fault strength data are poorly constrained. Therefore, fault reactivation analysis cannot be used to directly measure the maximum allowable pore pressure increase within a reservoir. We argue that fault reactivation analysis of this type can only be used for assessing the relative risk of fault reactivation and not to determine the maximum allowable pore pressure increase a fault can withstand prior to reactivation
    corecore