614 research outputs found

    Comparison of risk factors predicting return to work between patients with subacute and chronic non-specific low back pain: systematic review

    Get PDF
    The objective of the study was to provide an inventory of predictive instruments and their constituting parameters associated with return to work in patients with subacute (2-10weeks pain duration) and chronic (10-24weeks pain duration) non-specific low back pain (NSLBP). Data sources included systematic review in Medline, Embase, Cinahl, Central, PEDro, Psyndex, PsychInfo/PsycLit, and Sociofile up to September 2008, in reference lists of systematic reviews on risk factors, and of included studies. For the systematic review, two reviewers independently assessed study eligibility and quality, and extracted data. Disagreements were resolved by consensus. Risk factors were inventorised and grouped into a somatic and psychosocial domain. 23 studies reporting on subacute and 16 studies reporting on chronic patients were included. The studies on subacute patients reported on a total of 56 biomedical factors out of which 35 (63%) were modifiable and 61 psychosocial factors out of which 51 (84%) were modifiable. The corresponding values in studies on chronic patients were 44 biomedical [27 (62%) modifiable] and 61 [40 (66%) modifiable] respectively. Our data suggest that the interdisciplinary approach in patients at risk to develop persistent NSLBP is justified in both, the subacute and chronic disease stages. Psychosocial interventions might be more effective in subacute stages since a higher proportion of modifiable risk factors were identified in that grou

    Exercise and other non-pharmaceutical interventions for cancer-related fatigue in patients during or after cancer treatment : a systematic review incorporating an indirect-comparisons meta-analysis

    Get PDF
    Aim: To assess the relative effects of different types of exercise and other non-pharmaceutical interventions on cancer-related fatigue (CRF) in patients during and after cancer treatment. Design: Systematic review and indirect-comparisons meta-analysis. Data sources: Articles were searched in PubMed, Cochrane CENTRAL and published meta-analyses. Eligibility criteria for selecting studies: Randomised studies published up to January 2017 evaluating different types of exercise or other non-pharmaceutical interventions to reduce CRF in any cancer type during or after treatment. Study appraisal and synthesis: Risk of bias assessment with PEDro criteria and random effects Bayesian network meta-analysis. Results: We included 245 studies. Comparing the treatments with usual care during cancer treatment, relaxation exercise was the highest ranked intervention with a standardised mean difference (SMD) of −0.77 (95% Credible Interval (CrI) −1.22 to −0.31), while massage (−0.78; −1.55 to −0.01), cognitive–behavioural therapy combined with physical activity (combined CBT, −0.72; −1.34 to −0.09), combined aerobic and resistance training (−0.67; −1.01 to −0.34), resistance training (−0.53; −1.02 to −0.03), aerobic (−0.53; −0.80 to −0.26) and yoga (−0.51; −1.01 to 0.00) all had moderate-to-large SMDs. After cancer treatment, yoga showed the highest effect (−0.68; −0.93 to −0.43). Combined aerobic and resistance training (−0.50; −0.66 to −0.34), combined CBT (−0.45; −0.70 to −0.21), Tai-Chi (−0.45; −0.84 to −0.06), CBT (−0.42; −0.58 to −0.25), resistance training (−0.35; −0.62 to −0.08) and aerobic (−0.33; −0.51 to −0.16) showed all small-to-moderate SMDs. Conclusions: Patients can choose among different effective types of exercise and non-pharmaceutical interventions to reduce CRF

    Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products

    Get PDF
    We evaluate monoterpene-derived peroxy radical (MT-RO2) unimolecular autoxidation and self- and cross-reactions with other RO2 species in the GEOS-Chem global chemical transport model. The formation of associated highly oxygenated organic molecules (HOMs) and accretion products are tracked in competition with other bimolecular reactions. Autoxidation is the dominant fate up to 6-8 km for first-generation MT-RO2, which can undergo unimolecular H shifts. Reaction with NO can be a more common fate for H-shift rate constants < 0.1 s(-1) or at altitudes higher than 8 km due to the imposed Arrhenius temperature dependence of unimolecular H shifts. For MT-derived HOM-RO2, generated by multistep autoxidation of first-generation MT-RO2, reaction with other RO2 species is predicted to be the major fate throughout most of the boreal and tropical forest regions, whereas reaction with NO dominates in the temperate and subtropical forests of the Northern Hemisphere. The newly added reactions result in an approximate 4 % global average decrease in HO2 and RO2, mainly due to faster self-/cross-reactions of MT-RO2, but the impact upon HO2, OH, and NOx abundances is only important in the planetary boundary layer (PBL) over portions of tropical forests. Predicted HOM concentrations in MT-rich regions and seasons can exceed total organic aerosol predicted by the standard version of the GEOS-Chem model depending on the parameters used. Comparisons to observations reveal that large uncertainties remain for key reaction parameters and processes, especially with respect to the photochemical lifetime and volatility of HOMs as well as the rates and branching of associated RO2 accretion products. Further observations and laboratory studies related to MT-RO2-derived HOMs and gas-phase RO2 accretion product formation kinetics - especially their atmospheric fate, such as gas-particle partitioning, multiphase chemistry, and net secondary organic aerosol formation - are needed.Peer reviewe

    Thermal and in situ x-ray diffraction analysis of a dimorphic co-crystal 1:1 caffeine-glutaric acid

    Get PDF
    YesSpurred by the enormous interest in co-crystals from the pharmaceutical industry, many novel co-crystals of active pharmaceutical ingredients have been discovered in recent years and this has in turn led to an increasing number of reports on polymorphs of co-crystals. Hence, a thorough characterization and understanding of co-crystal polymorphs is a valuable step during drug development. The purpose of this study is to perform in situ structural analysis and to determine thermodynamic stability of a dimorphic co-crystal system, 1:1 caffeine-glutaric acid (CA-GA, Forms I and II). We performed thermal and structural characterizations by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), hot-stage microscopy (HSM), slurry and in situ variable temperature X-ray diffraction (VTXRD). For completeness, we have also re-determined crystal structures of CA-GA Forms I and II at 180 K using single crystal X-ray diffraction. Our results revealed that Form II is stable and Form I is metastable at ambient conditions. Further, the results suggest that the dimorphs are enantiotropically related and the transition temperature is estimated to be 79 Celcius degrees.This work was supported by Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore

    Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Get PDF
    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45%), followed by NOx (31%), total peroxy nitrates (ΣPNs; 14%), and total alkyl nitrates (ΣANs; 9–12%) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOxemissions will lead to a continued decline in surface ozone and less frequent high-ozone events

    Anthropogenic Control over Wintertime Oxidation of Atmospheric Pollutants

    Get PDF
    Anthropogenic air pollutants such as nitrogen oxides (NO(x) = NO + NO(2)), sulfur dioxide (SO(2)), and volatile organic compounds (VOC), among others, are emitted to the atmosphere throughout the year from energy production and use, transportation, and agriculture. These primary pollutants lead to the formation of secondary pollutants such as fine particulate matter (PM(2.5)) and ozone (O(3)) and perturbations to the abundance and lifetimes of short-lived greenhouse gases. Free radical oxidation reactions driven by solar radiation govern the atmospheric lifetimes and transformations of most primary pollutants and thus their spatial distributions. During winter in the mid and high latitudes, where a large fraction of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly slower. Using observations from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase NO(x) reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities, lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted winter air, and thus, the distribution and fate of primary pollutants on a regional to global scale

    Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations

    Get PDF
    Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations

    RAB8, RAB10 and RILPL1 contribute to both LRRK2 kinase-mediated centrosomal cohesion and ciliogenesis deficits

    Get PDF
    Mutations in the LRRK2 kinase are the most common cause of familial Parkinson's disease, and variants increase risk for the sporadic form of the disease. LRRK2 phosphorylates multiple RAB GTPases including RAB8A and RAB10. Phosphorylated RAB10 is recruited to centrosome-localized RILPL1, which may interfere with ciliogenesis in a disease-relevant context. Our previous studies indicate that the centrosomal accumulation of phosphorylated RAB8A causes centrosomal cohesion deficits in dividing cells, including in peripheral patient-derived cells. Here, we show that both RAB8 and RAB10 contribute to the centrosomal cohesion deficits. Pathogenic LRRK2 causes the centrosomal accumulation not only of phosho-RAB8 but also of phospho-RAB10, and the effects on centrosomal cohesion are dependent on RAB8, RAB10 and RILPL1. Conversely, the pathogenic LRRK2-mediated ciliogenesis defects correlate with the centrosomal accumulation of both phospho-RAB8 and phospho-RAB10. LRRK2-mediated centrosomal cohesion and ciliogenesis alterations are observed in patient-derived peripheral cells, as well as in primary astrocytes from mutant LRRK2 mice, and are reverted upon LRRK2 kinase inhibition. These data suggest that the LRRK2-mediated centrosomal cohesion and ciliogenesis defects are distinct cellular readouts of the same underlying phospho-RAB8/RAB10/RILPL1 nexus and highlight the possibility that either centrosomal cohesion and/or ciliogenesis alterations may serve as cellular biomarkers for LRRK2-related PD

    The translation, validity and reliability of the German version of the Fremantle Back Awareness Questionnaire

    Get PDF
    Background: The Fremantle Back Awareness Questionnaire (FreBAQ) claims to assess disrupted self-perception of the back. The aim of this study was to develop a German version of the Fre-BAQ (FreBAQ-G) and assess its test-retest reliability, its known-groups validity and its convergent validity with another purported measure of back perception. Methods: The FreBaQ-G was translated following international guidelines for the transcultural adaptation of questionnaires. Thirty-five patients with non-specific CLBP and 48 healthy participants were recruited. Assessor one administered the FreBAQ-G to each patient with CLBP on two separate days to quantify intra-observer reliability. Assessor two administered the FreBaQ-G to each patient on day 1. The scores were compared to those obtained by assessor one on day 1 to assess inter-observer reliability. Known-groups validity was quantified by comparing the FreBAQ-G score between patients and healthy controls. To assess convergent validity, patient\u27s FreBAQ-G scores were correlated to their two-point discrimination (TPD) scores. Results: Intra- and Inter-observer reliability were both moderate with ICC3.1 = 0.88 (95%CI: 0.77 to 0.94) and 0.89 (95%CI: 0.79 to 0.94), respectively. Intra- and inter-observer limits of agreement (LoA) were 6.2 (95%CI: 5.0±8.1) and 6.0 (4.8±7.8), respectively. The adjusted mean difference between patients and controls was 5.4 (95%CI: 3.0 to 7.8, p\u3c0.01). Patient\u27s FreBAQ-G scores were not associated with TPD thresholds (Pearson\u27s r = -0.05, p = 0.79). Conclusions: The FreBAQ-G demonstrated a degree of reliability and known-groups validity. Interpretation of patient level data should be performed with caution because the LoA were substantial. It did not demonstrate convergent validity against TPD. Floor effects of some items of the FreBAQ-G may have influenced the validity and reliability results. The clinimetric properties of the FreBAQ-G require further investigation as a simple measure of disrupted self-perception of the back before firm recommendations on its use can be made

    Ozone production chemistry in the presence of urban plumes

    Get PDF
    Ozone pollution affects human health, especially in urban areas on hot sunny days. Its basic photochemistry has been known for decades and yet it is still not possible to correctly predict the high ozone levels that are the greatest threat. The CalNex_SJV study in Bakersfield CA in May/June 2010 provided an opportunity to examine ozone photochemistry in an urban area surrounded by agriculture. The measurement suite included hydroxyl (OH), hydroperoxyl (HO_2), and OH reactivity, which are compared with the output of a photochemical box model. While the agreement is generally within combined uncertainties, measured HO2 far exceeds modeled HO_2 in NO_x-rich plumes. OH production and loss do not balance as they should in the morning, and the ozone production calculated with measured HO_2 is a decade greater than that calculated with modeled HO_2 when NO levels are high. Calculated ozone production using measured HO2 is twice that using modeled HO_2, but this difference in calculated ozone production has minimal impact on the assessment of NOx-sensitivity or VOC-sensitivity for midday ozone production. Evidence from this study indicates that this important discrepancy is not due to the HO_2 measurement or to the sampling of transported plumes but instead to either emissions of unknown organic species that accompany the NO emissions or unknown photochemistry involving nitrogen oxides and hydrogen oxides, possibly the hypothesized reaction OH + NO + O_2 → HO_2 + NO_2
    corecore