326 research outputs found

    Chlamydia control activities in Europe: cross-sectional survey

    Get PDF
    Background: Chlamydia is the most commonly reported bacterial sexually transmitted infection in Europe. The objective of the Screening for Chlamydia in Europe (SCREen) project was to describe current and planned chlamydia control activities in Europe. Methods: The authors sent a questionnaire asking about different aspects of chlamydia epidemiology and control to public health and clinical experts in each country in 2007. The principles of sexually transmitted infection control were used to develop a typology comprising five categories of chlamydia control activities. Each country was assigned to a category, based on responses to the questionnaire. Results: Experts in 29 of 33 (88%) invited countries responded. Thirteen of 29 countries (45%) had no current chlamydia control activities. Six countries in this group stated that there were plans to introduce chlamydia screening programmes. There were five countries (17%) with case management guidelines only. Three countries (10%) also recommended case finding amongst partners of diagnosed chlamydia cases or people with another sexually transmitted infection. Six countries (21%) further specified groups of asymptomatic people eligible for opportunistic chlamydia testing. Two countries (7%) reported a chlamydia screening programme. There was no consistent association between the per capita gross domestic product of a country and the intensity of chlamydia control activities (P = 0.816). Conclusion: A newly developed classification system allowed the breadth of ongoing national chlamydia control activities to be described and categorized. Chlamydia control strategies should ensure that clinical guidelines to optimize chlamydia diagnosis and case management have been implemented before considering the appropriateness of screening programmes

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Interaction effects at the magnetic-field induced metal-insulator transition in Si/SiGe superlattices

    Full text link
    A metal-insulator transition was induced by in-plane magnetic fields up to 27 T in homogeneously Sb-doped Si/SiGe superlattice structures. The localisation is not observed for perpendicular magnetic fields. A comparison with magnetoconductivity investigations in the weakly localised regime shows that the delocalising effect originates from the interaction-induced spin-triplet term in the particle-hole diffusion channel. It is expected that this term, possibly together with the singlet particle-particle contribution, is of general importance in disordered n-type Si bulk and heterostructures.Comment: 5 pages, 3 figures, Solid State Communications, in prin

    Chlamydia control activities in Europe: cross-sectional survey

    Get PDF
    Background: Chlamydia is the most commonly reported bacterial sexually transmitted infection in Europe. The objective of the Screening for Chlamydia in Europe (SCREen) project was to describe current and planned chlamydia control activities in Europe. Methods: The authors sent a questionnaire asking about different aspects of chlamydia epidemiology and control to public health and clinical experts in each country in 2007. The principles of sexually transmitted infection control were used to develop a typology comprising five categories of chlamydia control activities. Each country was assigned to a category, based on responses to the questionnaire. Results: Experts in 29 of 33 (88%) invited countries responded. Thirteen of 29 countries (45%) had no current chlamydia control activities. Six countries in this group stated that there were plans to introduce chlamydia screening programmes. There were five countries (17%) with case management guidelines only. Three countries (10%) also recommended case finding amongst partners of diagnosed chlamydia cases or people with another sexually transmitted infection. Six countries (21%) further specified groups of asymptomatic people eligible for opportunistic chlamydia testing. Two countries (7%) reported a chlamydia screening programme. There was no consistent association between the per capita gross domestic product of a country and the intensity of chlamydia control activities (P = 0.816). Conclusion: A newly developed classification system allowed the breadth of ongoing national chlamydia control activities to be described and categorized. Chlamydia control strategies should ensure that clinical guidelines to optimize chlamydia diagnosis and case management have been implemented before considering the appropriateness of screening programme

    Engineering simulations of a super-complex cultural heritage building: Ica Cathedral in Peru

    Get PDF
    The Cathedral of Ica, Peru, is one of the four prototype buildings involved in the ongoing Seismic Retrofitting Project, initiative of the Getty Conservation Institute. The complex historical building, which was heavily damaged by earthquakes in 2007 and 2009, can be divided into two substructures: an external masonry envelope and an internal timber frame built by a construction method known as quincha technique. This study makes use of the information available in literature and the results obtained from experimental campaigns performed by Pontificia Universidad Catlica del PerA and University of Minho. Nonlinear behaviour of masonry is simulated in the numerical models by considering specified compressive and tensile softening behaviour, while isotropic homogeneous and linear behaviour is adopted for modelling timber with appropriate assumptions on the connections. A single representative bay was initially studied by performing linear elastic analysis and verifying the compliance with the various criteria specified by the applicable normative to discuss the actual failure of Ica Cathedral. Afterwards, the structural behaviour of the two substructures composing the Cathedral is evaluated independently. Finally, the interaction of these two substructures is investigated by performing structural analysis on the entire structure of Ica Cathedral. Several structural analysis techniques, including eigenvalue, nonlinear static and dynamic analyses, are performed in order to: (1) evaluate the dominant mode shapes of the structure; (2) validate the numerical models by reproducing the structural damage observed in situ; (3) estimate the structural performance; and (4) identify the main failure mechanisms.This work was carried out with funding from the Getty Seismic Retrofitting Project under the auspices of the Getty Conservation Institute (GCI). This work is also partially financed by FEDER funds through the Competitivity Factors Operational Programme-COMPETE and by national funds through FCT-Foundation for Science and Technology within the scope of the projects POCI-01-0145-FEDER-007633 and PTDC/ECM-EST/2777/2014.info:eu-repo/semantics/publishedVersio

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    Effect of phosphate and temperature on force exerted by white muscle fibres from dogfish.

    Get PDF
    Effects of Pi (inorganic phosphate) are relevant to the in vivo function of muscle because Pi is one of the products of ATP hydrolysis by actomyosin and by the sarcoplasmic reticulum Ca pump. We have measured the Pi sensitivity of force produced by permeabilized muscle fibres from dogfish (Scyliorhinus canicula) and rabbit. The activation conditions for dogfish fibres were crucial: fibres activated from the relaxed state at 5, 12, and 20°C were sensitive to Pi, whereas fibres activated from rigor at 12°C were insensitive to Pi in the range 5-25 mmol l. Rabbit fibres activated from rigor were sensitive to Pi. Pi sensitivity of force produced by dogfish fibres activated from the relaxed state was greater below normal body temperature (12°C for dogfish) in agreement with what is known for other species. The force-temperature relationship for dogfish fibres (intact and permeabilized fibres activated from relaxed) showed that at 12°C, normal body temperature, the force was near to its maximum value
    corecore