55 research outputs found

    Prescribed Fire Use Among Black Landowners in the Red Hills Region, USA

    Get PDF
    The Red Hills Region of southern Alabama, northern Florida, and southwestern Georgia is one of the most prominent areas in the United States for conducting prescribed fire research and is the birthplace of fire ecology. The culture of prescribed burning in the Red Hills has been influenced by multiple ethnic groups, including the Seminole and Creek nations, Black landowners, and White researchers. Given the distinctive reliance of the region on prescribed fire, it is noteworthy that the combined issues of Black land loss, underrepresentation, and incentives for using prescribed fire on private lands in the southeastern United States have generated questions about diversity and inclusion in landowner outreach. To increase understanding about Black landowner historic and current use of prescribed fire for land management in the Red Hills Region, formal and informal interviews were conducted from May through August 2019 with 21 Black landowners and tenants to document the perspectives and thoughts of Black landowners and tenants of southern Alabama, northern Florida, and southwestern Georgia. The results of this research show that Black landowners, tenants, and fire experts, have been, and continue to be, influential in the development and sustainment of fire traditions in the RedHills and in the resilience of the longleaf pine ecosystem

    Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems

    Get PDF
    Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1-10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by >95%, and inadequate fire frequencies threaten many of the remnants today. In the absence of frequent fire, rapid colonization of hardwoods and shrubs occurs, and a broad-leaved midstory develops. This midstory encroachment has been the focus of much research and management concern, largely based on the assumption that the midstory reduces understory plant diversity through direction competition via light interception. The general application of this mechanism of degradation is questionable, however, because midstory density, leaf area, and hardwood species composition vary substantially along a soil moisture gradient from mesic to extremely xeric sites. Reanalysis of recently reported data from xeric longleaf pine communities suggests that the development of the forest floor, a less conspicuous change in forest structure, might cause a decline in plant biodiversity when forests remain unburned. We report here a test of the interactions among fire, litter accumulation, forest floor development, and midstory canopy density on understory plant diversity. Structural equation modeling showed that within xeric sites, forest floor development was the primary factor explaining decreased biodiversity. The only effects of midstory development on biodiversity were those mediated through forest floor development. Boundary line analysis of functional guilds of understory plants showed sensitivity to even minor development of the forest floor in the absence of fire. These results challenge the prevailing management paradigm and suggest that within xeric longleaf pine communities, the primary focus of managed fire regime should be directed toward the restoration of forest floor characteristics rather than the introduction of high-intensity fires used to regulate midstory structure.Peer reviewedForestr

    Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz <i>et al.</i> (2017)

    Get PDF
    International audienceIn a recent communication, Cruz et al. (2017) called attention to several recurring statements (mantras) in the wildland fire literature regarding empirical and physical fire behaviour models. Motivated by concern that these mantras have not been fully vetted and are repeated blindly, Cruz et al. (2017) sought to verify five mantras they identify. This is a worthy goal and here we seek to extend the discussion and provide clarification to several confusing aspects of the Cruz et al. (2017) communication. In particular, their treatment of what they call physical models is inconsistent, neglects to reference current research activity focussed on combined experimentation and model development, and misses an opportunity to discuss the potential use of physical models to fire behaviour outside the scope of empirical approaches

    Developing a translational ecology workforce

    Get PDF
    We define a translational ecologist as a professional ecologist with diverse disciplinary expertise and skill sets, as well as a suitable personal disposition, who engages across social, professional, and disciplinary boundaries to partner with decision makers to achieve practical environmental solutions. Becoming a translational ecologist requires specific attention to obtaining critical non-scientific disciplinary breadth and skills that are not typically gained through graduate-level education. Here, we outline a need for individuals with broad training in interdisciplinary skills, use our personal experiences as a basis for assessing the types of interdisciplinary skills that would benefit potential translational ecologists, and present steps that interested ecologists may take toward becoming translational. Skills relevant to translational ecologists may be garnered through personal experiences, informal training, short courses, fellowships, and graduate programs, among others. We argue that a translational ecology workforce is needed to bridge the gap between science and natural resource decisions. Furthermore, we argue that this task is a cooperative responsibility of individuals interested in pursuing these careers, educational institutions interested in training scientists for professional roles outside of academia, and employers seeking to hire skilled workers who can foster stakeholder-engaged decision making

    Robust Projections of Future Fire Probability for the Conterminous United States

    Get PDF
    Globally increasing wildfires have been attributed to anthropogenic climate change. However, providing decision makers with a clear understanding of how future planetary warming could affect fire regimes is complicated by confounding land use factors that influence wildfire and by uncertainty associated with model simulations of climate change. We use an ensemble of statistically downscaled Global Climate Models in combination with the Physical Chemistry Fire Frequency Model (PC2FM) to project changing potential fire probabilities in the conterminous United States for two scenarios representing lower (RCP 4.5) and higher (RCP 8.5) greenhouse gas emission futures. PC2FM is a physically-based and scale-independent model that predicts mean fire return intervals from both fire reactant and reaction variables, which are largely dependent on a locale\u27s climate. Our results overwhelmingly depict increasing potential fire probabilities across the conterminous US for both climate scenarios. The primary mechanism for the projected increases is rising temperatures, reflecting changes in the chemical reaction environment commensurate with enhanced photosynthetic rates and available thermal molecular energy. Existing high risk areas, such as the Cascade Range and the Coastal California Mountains, are projected to experience greater annual fire occurrence probabilities, with relative increases of 122% and 67%, respectively, under RCP 8.5 compared to increases of 63% and 38% under RCP 4.5. Regions not currently associated with frequently occurring wildfires, such as New England and the Great Lakes, are projected to experience a doubling of occurrence probabilities by 2100 under RCP 8.5. This high resolution, continental-scale modeling study of climate change impacts on potential fire probability accounts for shifting background environmental conditions across regions that will interact with topographic drivers to significantly alter future fire probabilities. The ensemble modeling approach presents a useful planning tool for mitigation and adaptation strategies in regions of increasing wildfire risk

    Linking complex forest fuel structure and fire behaviour at fine scales

    Get PDF
    Abstract. Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest understorey fuels using ground-based LIDAR (light detection and ranging) coupled with infrared thermography for recording precise fire temperatures. We used ensemble classification and regression trees to examine the relationships between fuel characteristics and fire temperature dynamics. Fire behaviour was best predicted by characterising fuelbed heterogeneity and continuity across multiple plots of similar fire intensity, where impacts from plot-to-plot variation in fuel, fire and weather did not overwhelm the effects of fuels. The individual plot-level results revealed the significance of specific fuel types (e.g. bare soil, pine leaf litter) as well as the spatial configuration of fire. This was the first known study to link the importance of fuelbed continuity and the heterogeneity associated with fuel types to fire behaviour at metre to submetre scales and provides the next step in understanding the complex responses of vegetation to fire behaviour

    Foundations of Translational Ecology

    Get PDF
    Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today\u27s complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context-specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use-driven, actionable science. Moreover, addressing research questions that arise from on-the-ground management issues – as opposed to the top-down or expert-oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long-term, sustained engagement between partners

    Principles of fire ecology

    Get PDF
    [EN]: Fire ecology is a complex discipline that can only be understood by integrating biological, physical, and social sciences. The science of fire ecology explores wildland fire’s mechanisms and effects across all scales of time and space. However, the lack of defined, organizing concepts in fire ecology dilutes its collective impact on knowledge and management decision-making and makes the discipline vulnerable to misunderstanding and misappropriation. Fire ecology has matured as a discipline and deserves an enunciation of its unique emergent principles of organization. Most scientific disciplines have established theories, laws, and principles that have been tested, debated, and adopted by the discipline’s practitioners. Such principles reflect the consensus of current knowledge, guide methodology and interpretation, and expose knowledge gaps in a coherent and structured way. In this manuscript, we introduce five comprehensive principles to define the knowledge fire ecology has produced and provide a framework to support the continued development and impact of the fire ecology discipline.[ES]: La ecología del fuego es una disciplina compleja que solo puede ser comprendida mediante la integración de las ciencias biológicas, físicas, y sociales. La ciencia de la ecología del fuego explora los mecanismos y efectos de los fuegos de vegetación a través de escalas espaciales y temporales. Sin embargo, la falta de conceptos definidos y organizativos en ecología del fuego diluye su impacto colectivo en el conocimiento y en el proceso de toma de decisiones de manejo, haciendo esta disciplina vulnerable a desentendimientos y uso indebido. La ecología del fuego ha madurado como disciplina y requiere de una articulación de sus principios de organización únicos y emergentes. La mayoría de las disciplinas científicas han establecido teorías, leyes y principios que han sido probados, debatidos y adoptados por los practicantes de esas disciplinas. Estos principios reflejan el consenso sobre el conocimiento actual, guían su metodología e interpretación, y exponen los vacíos del conocimiento de una manera coherente y estructurada. Es este trabajo, introducimos cinco principios comprehensivos que definen el conocimiento que la ecología del fuego ha producido, y provee de un marco conceptual para apoyar el desarrollo continuo e impactos de la ecología del fuego como disciplina.Peer reviewe

    Integrating plant physiology into simulation of fire behavior and effects

    Get PDF
    Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future

    Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz <i>et al.</i> (2017)

    Get PDF
    International audienceIn a recent communication, Cruz et al. (2017) called attention to several recurring statements (mantras) in the wildland fire literature regarding empirical and physical fire behaviour models. Motivated by concern that these mantras have not been fully vetted and are repeated blindly, Cruz et al. (2017) sought to verify five mantras they identify. This is a worthy goal and here we seek to extend the discussion and provide clarification to several confusing aspects of the Cruz et al. (2017) communication. In particular, their treatment of what they call physical models is inconsistent, neglects to reference current research activity focussed on combined experimentation and model development, and misses an opportunity to discuss the potential use of physical models to fire behaviour outside the scope of empirical approaches
    • …
    corecore