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Abstract. In a recent communication, Cruz et al., 2017 called attention to a number of recurring 11 

statements (mantras) in the wildland fire literature regarding empirical and physical fire behavior 12 

models. Motivated by concern that these mantras have not been fully vetted and are repeated blindly, 13 

Cruz et al. seek to verify five mantras they identify. This is a worthy goal and we seek here to extend the 14 

discussion and provide clarification to a number of confusing aspects of the Cruz et al. communication. 15 

In particular, their treatment of what they call physical models is inconsistent, neglects reference to 16 

current research activity focused on combined experimentation and model development, and misses an 17 

opportunity to discuss the potential use of physical models to fire behavior outside the scope of 18 

empirical approaches.  19 

Brief summary: The validity of a number commonly held beliefs regarding fire behavior models is 20 

discussed with an emphasis on physical (or physics-based) models.   21 

Additional keywords: empirical models, physics-based models, CFD 22 

  23 
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Introduction 24 

In a recent commentary on fire behavior models, Cruz et al. (2017) identify five statements, or mantras, 25 

they believe have gained “currency as facts — or truths” regarding empirical and physical (sometimes 26 

called physics-based or process-based) wildland fire models. Cruz et al. are concerned that an 27 

unquestioning acceptance of the mantras will lead to poorly informed use of the models in question. 28 

They seek, therefore, “to discuss the validity” of these mantras. We agree that model users should be 29 

aware of the strengths and weaknesses of a given model. However, inconsistencies between how the 30 

mantras are represented by Cruz et al, and how they appear in the literature add confusion, rather than 31 

clarity, to a broader discussion. In some cases, the authors discussion of the mantras is not even 32 

consistent within their own framework. Regarding physical models, the largely negative critique is 33 

confused by inconsistent definitions, inaccuracies, and falls short of understanding how model 34 

advancement in engineering science is coupled to appropriate measurements. The authors appear to 35 

favor empirical models for prediction while not recognizing the capabilities of physical models, 36 

especially those based on computational fluid dynamics, for improving our understanding of the 37 

mechanisms and their role in driving fire behavior.  38 

While we appreciate the motivation and goal of Cruz et al., our intent in this response is to provide a 39 

constructive critique of Cruz et al. by clarifying the particularly confusing elements and providing 40 

viewpoints from the engineering and management perspectives. In Cruz et al., empirical (as opposed to 41 

semi-empirical) models are the subject of the first two mantras and what they call “physical” models are 42 

considered in the last three mantras. These mantras are: 43 

Mantra 1 (M1): Empirical models work well over the range of their original data. 44 

Mantra 2 (M2):  Empirical models are not appropriate for and should not be applied to 45 

conditions outside the range of the original data. 46 
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Mantra 3 (M3):  Physical models provide insight into the mechanisms that drive wildland fire 47 

spread and other aspects of fire behavior. 48 

Mantra 4 (M4):  Physical models give a better understanding of how fuel treatments modify fire 49 

behavior. 50 

Mantra 5 (M5):  Physical models can be used to derive simplified models to predict fire behavior 51 

operationally. 52 

 53 

 54 

The discussion regarding physical models is flawed 55 

The discussion related to the mantras for the physical models displays a limited understanding of 56 

modeling approaches that attempt to include (explicitly or implicitly) physical processes driving wildland 57 

fire. In the first paragraph of Cruz et al., the authors define a physical modeling approach as one that 58 

“employs a mathematical description of fundamental physical and chemical processes underpinning 59 

combustion, fluid flow and heat transfer”. We take this to mean that the processes driving fire behavior 60 

are explicitly accounted for in “physical models”. Cruz et al. then use the term “physical model” for both 61 

simpler models that, for example, neglect the process of convective heat transfer (in M3 and M5) and 62 

for more comprehensive physical models based on computational fluid dynamics (CFD) that explicitly 63 

account for all the recognized driving processes (in M3 and M4), including convective heat transfer.  64 

A consequence of this inconsistent use of the term physical model is confusion and lack of 65 

completeness. For clarity, here we place physical models into two groups: one group uses CFD, and the 66 

other does not. Both have model equations that are the result of approximations based on physically 67 

motivated assumptions. To be more precise, we use CFD based physical models to denote 68 
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comprehensive approaches that explicitly model the recognized processes driving fire behavior. This is 69 

consistent with references cited for CFD based models and statements made by Cruz et al.  70 

In Cruz et al., nearly all the cited non-CFD physical models do not explicitly model convective heat 71 

transfer. Cruz et al. appear to mistakenly assume that convective heat transfer was neglected because 72 

the model developers assumed it is not relevant to fire spread, which is clearly not the case. If one reads 73 

the cited literature, it is clear that the model developers are fully aware that convective heat transfer, in 74 

some environmental conditions, will be relevant; but these are not the environmental conditions for 75 

which they derive their model. The assumption of radiation dominance in these models is not, 76 

therefore, an “example of our ignorance of the fundamental processes governing wildland fire behavior” 77 

as stated in the third paragraph of the M3 discussion. 78 

Adding to the confusion, Cruz et al. incorrectly interpret findings in the cited literature (Anderson et al., 79 

2010; Butler, 2010) when they write (end of second paragraph of M3 discussion) “recent experimental 80 

evidence suggests it is convective heat transfer … that is the dominant heat transfer mechanism 81 

determining wildland fire propagation”. Anderson et al. (2010) don’t measure radiation and, therefore, 82 

do not compare radiative and convective heat fluxes. Butler (2010) finds that convective and radiative 83 

heat flux can be comparable in magnitude at certain times, and do not state that convective heat 84 

transfer dominates. Finney et al. (2015) do state that “repetitive convective heating thus appears to be 85 

the critical heat transfer mechanism causing ignition and spread of these fires”. In addition, Morandini 86 

and Silvani (2010) (this study was not referenced in Cruz et al.) conducted five field experiments and 87 

found that, depending on the fire experiment, radiative heat transfer either dominated convective heat 88 

transfer, or they were of similar magnitude.  Morandini and Silvani (2010) considered shrub fires. Butler 89 

(2010) considered full-scale crown fires.  Finney et al. (2015) considered laboratory-scale surface fire in 90 

highly uniform fuel beds. Clearly, more work is needed to determine why the findings of these 91 

experiments differ. This point is missed by Cruz et al.  92 
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The latter part of the discussion of M3 and most of the M4 discussion is focused on the challenges facing 93 

CFD based physical models, including the need for some empiricism and more model validation. While 94 

space limits a comprehensive response, some statements are notably incorrect and demonstrate a 95 

limited understanding of CFD modeling. For example, it is not possible to model buoyant flow driven by 96 

combustion while assuming (as stated by Cruz et al., in the M3 section) constant density, incompressible 97 

flow. 98 

Significantly, what Cruz et al. do not convey is that the reason they can list challenges to CFD based 99 

modeling is precisely because these models are well characterized, both in their modeling approach and 100 

in areas needing improvement. CFD based fire behavior models are constructed from coupled numerical 101 

models, for the governing processes, that vary in their degree of maturity and proven physical fidelity. 102 

For example, the models for fluid flow (including buoyancy induced flow) and radiation are significantly 103 

more advanced and validated than models for the processes of thermal degradation and momentum 104 

drag in vegetation. Cruz et al. give an incomplete picture of the advances made and the state of activity 105 

(including new experiments) in pursuit of improvements to these models (e.g., Mueller 2017a, Anand et 106 

al. 2017, Lamorlette et al. 2018).  107 

In the last sentence of the M3 section Cruz et al. summarize their view of CFD based physical modeling: 108 

“Until a complete and robust understanding of the processes … we question how much is to be gained 109 

from pure modeling exercises ….” This statement is problematic for a number of reasons. Physical 110 

models have approximations and will not be “complete”, but they can be useful and their failings can be 111 

characterized and addressed, making this a specious criticism. In addition, the suggestion that the 112 

developers of CFD based physical models are in some way focused on “pure modeling exercises” 113 

displays a lack of familiarity with fire engineering science. It is fundamental to the scientific method and 114 

well established in the fire engineering community that the development of physical models requires 115 

comparison with observations and experiments (see Mell et al. 2007, Tihay et al. 2008, Mell et al. 2009, 116 



 6 

Morvan et al. 2009, Tihay et al. 2009, Hoffman et al. 2016, El Houssami et al. 2018). The necessity to 117 

have detailed comparisons between numerical results and experimental data (i.e., not just rate of 118 

spread observations) often push experimentalists to use more and more sophisticated experimental 119 

diagnostic methods in the laboratory (Marcelli et al 2004, Morandini et al 2005, Zhou et al 2007, Lozano 120 

et al 2010) and in the field (Frankman et al 2013, Mueller et al. 2017b). This list of experimental studies, 121 

using advanced diagnostics, is only a sampling, many more exist. 122 

Mantra 2 is not representative of statements in literature 123 

There is no acknowledgment or discussion of how the particular wording of any given mantra, which 124 

impacts the mantra’s meaning, required choices by the authors. For example, consider mantra 2 which 125 

is stated to be “likely the most commonly used fire behaviour modelling mantra”. In the literature cited 126 

in Table 1 of Cruz et al. for M2, the following text can be found (note, Cruz et al. do not provide these 127 

excerpts):  128 

Catchpole and de Mestre (1986): “While such models may be very successful over fuel and 129 

environmental conditions similar to those occurring in the test fires, their lack of a physical basis means 130 

that the use of such models outside of these conditions must be treated with caution.”  131 

Morvan and Larini (2001): “The predicted values for the ROS [rate of spread] remain valid for conditions 132 

close to the experimental conditions which were used to gauge the parameters of the model. … 133 

Unfortunately the results obtained with this type of approaches are not easily applicable for more 134 

general fire conditions.” 135 

Balbi et al. (2009): “… but the model is only valid in the range of experiments for which it was validated. 136 

Peculiarly, the change from laboratory to field scale experiments is not supported, but involves a new 137 

calibration of the parameters.”   138 
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Mell et al. (2010) “… strictly speaking, their application to environmental conditions outside of those for 139 

which they were derived is not justified.” 140 

Pastor et al. (2003): “These are only applicable to systems in which conditions are identical to those 141 

used in formulating and testing the models.” Later in the paper it is stated, regarding McArthur meters 142 

for dry Eucalypt forest, that: “Nevertheless, the use of this model in landscapes with vegetation different 143 

from that of dry Eucalypt forest in Australia should be done with caution.”  144 

At first glance, these quoted statements seem to be well represented by M2 of Cruz et al. However, 145 

most of the statements allow for the possibility of applying an empirical model outside its original data 146 

set, but with appropriate caution. Thus, the wording of the Cruz et al. version of this mantra is stricter 147 

than that of the authors cited because Cruz et al. make no allowance for the possibility that an empirical 148 

model may work outside the original environmental conditions. This sets the stage for easily invalidating 149 

M2 by finding any case where an empirical model works sufficiently well outside its originating 150 

environmental conditions. This is what Cruz et al. do in their discussion of M2.  151 

Cruz et al. go further and state that “empirical models are likely to be valid for far drier and windier 152 

conditions than those involved in the model development”. But this statement required sufficient 153 

measurements in the new environment to show that the original model actually worked outside its 154 

dataset. Also, there are contrary examples. The work by Fernandes (2014) had the opposite finding: an 155 

empirical model could not be successfully extended to environmental conditions outside its original 156 

dataset unless it was recalibrated using the new data.  157 

While many scientists would allow that an empirical model may work for environmental conditions 158 

outside its originating dataset, they would also agree that without measurements confirming it, there is 159 

no justification for asserting that the empirical model will do so with quantifiable confidence. Caution is 160 

inherent to the process of using empirically fit models beyond their domain of inference and is taught in 161 
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basic statistics (Sokal and Rohlf 1995).  In essence, Cruz et al. agree with this when they state, at the end 162 

of M2, “evaluation should always precede the use of models within operational contexts”.  163 

 164 

Are mantras 3 through 5 valid? 165 

We agree that the wording of M3 is representative of the literature and believe it to be valid. As an 166 

example, we provide a simple demonstration of how of CFD based models can provide insight into the 167 

roles of convective and radiative heat transfer. Figure 1 shows results from a three-dimensional, time 168 

dependent, simulation (using the wildland-urban interface fire dynamics simulator (WFDS); Mell et al. 169 

2009; Perez-Ramirez et al. 2017 have model details), of a surface fire spreading, with no ambient wind, 170 

through a 10 cm deep, 80 cm wide, 1.8 m long excelsior fuel bed. Figure 1 shows the time histories of 171 

the gas and vegetation temperatures and the contribution of the convective (𝛻 ⋅ 𝑞CONV) and radiative 172 

(𝛻 ⋅ 𝑞RAD) heat fluxes to the rate of change of the vegetation’s temperature. These quantities are 173 

plotted at two vertical locations (both at a distance of 1 m from the ignition region): z=35 cm above the 174 

fuel bed (i.e., a location subjected to the combustion generated buoyant plume and intermittent flame) 175 

and at z = 0 cm (i.e., top of fuel bed and subjected to a relatively slower and less variable flow and 176 

radiation from a continuous fire front). Consistent with the findings of Finney et al. (2015) (see their Fig. 177 

5A), the vegetation temperature at z = 35 cm follows a “stair-stepped” rise that is controlled by a varying 178 

convective heat flux (Figs. 1a and 1b). At the z = 0 cm on top of the fuel bed (Figs. 1c, 1d), radiation 179 

dominates until near ignition (Tveg ≈ 350 C, time = 36 s), at which point radiation and convection are 180 

comparable, at no point does convection exhibit the large oscillations seen at z = 35 cm. The 181 

experimental configuration of Finney et al. (2015) is a surface fire and their measurement location is 182 

similar to Figs. 1c and 1d (i.e., at the top of the fuel bed). Their results are similar to Figs. 1a and 1b 183 
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because their imposed wind increases the unsteady behavior of the flame. Simulations with WFDS give 184 

similar results with an imposed wind (not shown).  185 

Regarding M4, we believe that Cruz et al. chose a wording that is stricter than in the literature. This 186 

mantra should read: “Physical models have the potential to give a better understanding of how fuel 187 

treatments modify fire behavior”, which we believe is valid. It is not clear why Cruz et al. did not write 188 

M4 this way, especially since their opening sentence introducing M4 does. CFD based models have been 189 

used to simulate the influence of the spatial heterogeneity of vegetation on fire behavior (e.g., in 190 

addition to the references in Cruz et al.: Pimont et al. 2011, Hoffman et al. 2015, Ziegler et al. 2017). The 191 

challenge is to evaluate how well these simulations represent reality, which requires well designed 192 

experiments. This is well recognized by physical modelers and the community would be better served if 193 

Cruz et al. discussed the need for well-designed experiments to support model development and current 194 

activity. Instead, Cruz et al. present an obstructive discussion on model approximations and the lack of 195 

model validation. Also, with their emphasis that the physical models are not ready for operational use, 196 

the discussion deviates from M4. The wording of M4 does not explicitly state that it refers to either CFD 197 

based physical models (which is the only type of physical model cited) or operational objectives. 198 

We agree with Cruz et al.’s statement in M5 that models applied to operational objectives need to be 199 

properly used and their limitations known. However, their M5 discussion suffers from another 200 

inconsistent use of the term “physical model”. In this section, they write: “the physical model is an 201 

acceptable representation of the fire processes and that the only limitations for model implementation 202 

are extraneous to the modelling of the fire processes, such as numerical implementation issues and 203 

computational time demands”. This is followed by their declaration that Albini’s model (Albini 1996, 204 

2000) is a physical model of crown fire spread. But Albini’s model does not meet the characteristics of a 205 

physical model as described above by Cruz et al. Instead, Albini’s model is a simpler approach and Butler 206 

et al. (2004) combine four existing simpler models for different components of the problem (see bottom 207 
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right of page 1590 in Butler et al. 2004). Thus, the Cruz et al. use of Butler et al. (2004) has no relevance 208 

to M5.  209 

While we do not find compelling evidence that M5 appears in the references cited, we agree with the 210 

mantra in the sense that it is possible to use ROS predictions from CFD based models to develop 211 

“empirical” formulas. For example, the study of Mell et al. (2007) found good agreement of the head fire 212 

ROS determined from numerical predictions and an empirical model based on field observations. This 213 

included predictions of fireline acceleration dependent on the head fire width. Thus, these simulations 214 

could have been the basis of an empirical model. But model developers, as a matter of course, are 215 

reluctant to provide such empirical models without sufficient characterization of model performance, 216 

which requires a range of appropriate experiments. Examples of analysis leading to a reduced model 217 

from a more comprehensive physical model include the works of Simeoni et al. (2001), who use the 218 

approach of model reduction, and Margerit and Sero-Guillaume (2002) who use asymptotic analysis. 219 

Management implications  220 

From the perspective of a land manager, the changing landscapes in which wildfires and prescribed fires 221 

are managed, demand a more robust toolset for understanding the processes at play. Operational tools 222 

for predicting fire behavior lag far behind the science of fire-atmospheric interactions, and a continued 223 

reliance on empirical models becomes less “predictive” as managers face increasingly novel 224 

combinations of fuels (from non-native species), weather, climate, and heterogeneity across landscapes 225 

(Kraaij et al. 2018).  Furthermore, by definition, empirical models cannot capture, with well-226 

characterized confidence, the limits/extremes of observed fires (see discussion of M2). This limitation 227 

creates the need for caution, which is often not adequately relayed to the management community, 228 

when employing empirical models beyond their domain of origin.  Also, managing fire in conditions for 229 

which measurements are incomplete creates an important operational decision space for the use of CFD 230 
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based approaches for understanding the potential physical mechanisms in increasingly complex 231 

contexts. Empirical modeling focuses almost exclusively on the ROS. The use of ROS as a gold standard 232 

for validation further misses a critical management need to understand complex fire-atmospheric 233 

feedbacks, multiple fireline development, and canopy induced flows on planned ignitions. There are 234 

simply too many management tactics and decisions that involve critical fire behavior phenomena 235 

outside the domain of empirical inference. Because managers are themselves empirical modelers, tools 236 

that operate at conditions and fire behavior at the edge of their experience are the most critical for 237 

enhancing decision making in operational contexts.   238 

Using CFD or other physical modeling tools is needed for the evaluation, either retrospectively or 239 

proactively, of processes and mechanisms that generate unexpected fire behaviors.  Such lessons 240 

learned for fire reconstructions has proven useful in understanding rare events (e.g., Cunningham and 241 

Reeder 2009).  It is equally important for managers to understand when CFD or other physics-based 242 

modeling tools approach the limits of their applicability.  If skepticism of CFD and trust in empirical 243 

models is the ultimate point of Cruz et al., then they sadly miss the opportunities that each approach 244 

provides as managers tackle a range of operational contexts.   245 

Conclusions 246 

We believe that there is a need for all types of models for research and for operational purposes. We 247 

also firmly reject the assertion that because all the physical processes and their interaction driving fire 248 

behavior are not fully understood, physical modeling should be discouraged or held suspect. History and 249 

the scientific method have shown that progress in physical modeling is made with initial simplifying 250 

approximations to be tested against well designed experiments. The idea that the two approaches 251 

(experimental and theoretical/numerical) are complementary is widely shared in the scientific 252 

community (as, notably, stated in Cruz et al 2011).  253 
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Recurrent in Cruz et al. is the recognized need for well-designed experiments for the development and 254 

evaluation of both empirical and physical models. We heartily agree and emphasize that for physical 255 

models, especially in the field, these measurements are challenging (e.g., Mueller et al. 2017b; Mueller 256 

et al. 2018) and require careful consideration of model needs in order to adequately provide 257 

information on vegetation, wind, and fire behavior. 258 

Uncertainty is and will always be part of a fire manager’s risk calculations, and most managers clearly 259 

understand that models are tools.  Nearly all managers are also anxiously awaiting tools that provide 260 

insight into fire behaviors not already self-evident through their own observations. The critical targeting 261 

of new approaches based on physical modeling, especially CFD based, by Cruz et al. runs the risk of 262 

undermining innovation and opportunities for managers to learn from this branch of fire research.  263 
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(a)  

 

(c) 

 

(b) 

 

(d)  

 

Figure 1: Results from a CFD based physical model simulation of a fire spreading through an excelsior fuel 

bed in the absence of an ambient wind. The gas temperature, the vegetation temperature, and measures 

of the convective (𝛻 ⋅ 𝑞CONV) and radiative (𝛻 ⋅ 𝑞RAD) flux into a 2 cm3 volume of excelsior are plotted 

versus time. The left-side column (figures (a) and (b)) show these quantities at a location z = 35 cm above 

the fuel bed. The right-side column (figures (c) and (d)) are for a location at the top of the fuel bed, z = 0 

cm.  
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