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H I G H L I G H T S

• PC2FM is used to project shifts in 21st
century fire regimes due to climate
change.

• Fire probability is predicted to increase
across the conterminous US.

• Increasing temperatures primarily
account for projected rising fire proba-
bilities.

• Pyrome analogs illustrate uncertainty in
projections of future fire probability.

• PC2FM provides a useful compromise
between empirical and processed-
based fire models.
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Globally increasingwildfires have been attributed to anthropogenic climate change. However, providing decision
makers with a clear understanding of how future planetary warming could affect fire regimes is complicated by
confounding land use factors that influence wildfire and by uncertainty associatedwithmodel simulations of cli-
mate change. We use an ensemble of statistically downscaled Global Climate Models in combination with the
Physical Chemistry Fire Frequency Model (PC2FM) to project changing potential fire probabilities in the conter-
minous United States for two scenarios representing lower (RCP 4.5) and higher (RCP 8.5) greenhouse gas emis-
sion futures. PC2FM is a physically-based and scale-independent model that predicts mean fire return intervals
fromboth fire reactant and reaction variables,which are largely dependent on a locale's climate. Our results over-
whelmingly depict increasing potential fire probabilities across the conterminous US for both climate scenarios.
The primarymechanism for the projected increases is rising temperatures, reflecting changes in the chemical re-
action environment commensuratewith enhanced photosynthetic rates and available thermalmolecular energy.
Existing high risk areas, such as the Cascade Range and the Coastal California Mountains, are projected to expe-
rience greater annual fire occurrence probabilities, with relative increases of 122% and 67%, respectively, under
RCP 8.5 compared to increases of 63% and 38% under RCP 4.5. Regions not currently associated with frequently
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occurring wildfires, such as New England and the Great Lakes, are projected to experience a doubling of occur-
rence probabilities by 2100 under RCP 8.5. This high resolution, continental-scale modeling study of climate
change impacts on potential fire probability accounts for shifting background environmental conditions across
regions that will interact with topographic drivers to significantly alter future fire probabilities. The ensemble
modeling approach presents a useful planning tool for mitigation and adaptation strategies in regions of increas-
ing wildfire risk.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Anthropogenic climate change is expected to profoundly alter wild-
landfire regimes globally (Bowman et al., 2014). Documented increases
in fire frequencies (Enright et al., 2015), fire season (Westerling et al.,
2006), extended droughts (Cook et al., 2015; Gonzalez et al., 2018),
and exceptional fire behavior across many ecosystems (Flannigan
et al., 2001; Goetz et al., 2007; Boer et al., 2020) collectively indicate
that changes in fire regimes can be both abrupt and dramatic. Develop-
ing rigorous projections of potential future changes in fire regime char-
acteristics is an important contribution to the ongoing societal
assessment of the consequences associated with releasing large quanti-
ties of greenhouse gases into the atmosphere. Moreover, such projec-
tions can be used by managers and decision makers to inform
adaptation strategies that are developed in response to, and in anticipa-
tion of, changing wildland fire regimes.

Projecting potential responses of wildfire to future climate changes
is complicated by the complex and often imprecisely defined concept
of a ‘wildlandfire regime’. Typically, a fire regime refers to the combined
aspects of fire frequency, intensity, severity, spatial extent, seasonality,
type (surface, ground, crown, or mixtures of these), predictability, and
interactions with other disturbances (Agee, 1993). Some physically-
based models and agent-based models are able to comprehensively
model fire regimes by explicitly representing fire weather, behavior,
and effects that account for changes in vegetation through carbon
modeling (Hulse D et al., 2016; Keane et al., 2004; Scheller et al.,
2019). Examples of suchmodels that have been used to study changing
fire regimes include LANDIS-II (Scheller et al., 2007; Creutzburg et al.,
2017; Krofcheck et al., 2019), Fire-BGC (Keane et al., 1996, 1999), and
MC 1 and 2 (Bachelet et al., 2015; Sheehan et al., 2015). Because these
models are at least partly constructed from physics-based first princi-
ples, it is possible to explore potential nonlinear interactions and feed-
backs between vegetation and fire under changing and potentially
novel climates (McKenzie et al., 2004), but doing so often requires de-
tailed information on site conditions (e.g., temperature, precipitation,
soils), fuels, and aspects of plant community structure and composition.

Computational advances have facilitated the use of these resource-
intensive models at ever-improving spatial-temporal extents and reso-
lutions. For example, Finney et al. (2011) developed a stochastic model,
the large-fire simulation system (FSim), which simulates fire ignition
and growth for 10,000 to 50,000 years of artificial weather using the
Energy Release Component (ERC) to capture the daily and seasonal var-
iability of moisture of different fuels in each of 134 Fire Planning Units
(FPUs) in order to achieve national coverage of burn probabilities.
However, resource and computational limits still impose significant
constraints on research designs that employ this approach. In particular,
more robust treatments of uncertainty about future fire regime changes
in response to planetary warming remain difficult to pursue. Rigorously
assessing the scientific and epistemological uncertainty about future
climate change impacts through, for example, incorporating results
from multiple climate models and greenhouse gas emission scenarios
is a critical component of any risk assessment that seeks to avoid over-
confident decision making (Terando et al., 2020).

Alternatively, simpler and computationally inexpensive empirical
models can be used that apply statistical relationships between the

observed climate and some reduced set of fire regime characteristics
such as fire frequency, severity, or area burned (e.g., Parks et al., 2014;
Whitman et al., 2015; Terando et al., 2017). Fireweather indices derived
frommeteorological parameters and broad-scale climate indices, for ex-
ample, have been used to infer the direction and magnitude of future
changes in fire activity for areas ranging from regions to continents to
the entire globe (e.g., Westerling et al., 2006; Krawchuk et al., 2009;
Moritz et al., 2012; Hurteau et al., 2014; Calheiros et al., 2021). While
empirical approaches can be applied more easily over large domains
and can better entrain large datasets into an uncertainty analysis, their
simplicity precludes detailedmodeling of fire regimeswhose character-
istics depend on multiple factors that vary across finer spatial and tem-
poral scales (Shen et al., 2019). Further, empirical models may not
capture relevant spatial heterogeneity in fire, leading to spatially inac-
curate estimates of future fire activity (e.g., Boulanger et al., 2014). We
note that this tradeoff betweenmodel complexity and treatment of un-
certainty in global change impacts research is well-known and is analo-
gous to the tradeoff identified when choosing whether to employ
statistical or dynamical downscaling of Global Climate Models (GCMs)
to derive decision-relevant climate change projections (Fowler et al.,
2007; Maraun et al., 2010).

One promising approach is to use a simplified physically-based
model that is computationally fast but has a first-principles framework
that can still capture important fundamental (and often nonlinear) as-
pects of climate-fire regime interactions. A similar concept exists in
physical climatology, where simple and computationally inexpensive
zero- or one-dimensional energy balance models (Hartmann, 2016)
have long been used to predict Earth's surface temperature based on ra-
diation theory. In the fire-climate research community, the Physical
Chemistry Fire Frequency Model (PC2FM: Guyette et al., 2012) is one
such model that could potentially bridge this gap between complexity,
mechanistic fidelity, and computational cost. PC2FM was developed
from a chemical reaction rate equation to model a single variable, fire
frequency or Mean Fire Interval (MFI), as a product of reactant concen-
trations (based on factors affecting fuel production and decay) and reac-
tion potential (based on the physical chemistry of climate and fire). The
model is parameterized using just three variables: mean maximum air
temperature, mean annual precipitation, and elevation (used to esti-
mate the partial pressure of oxygen).

PC2FM utilizes multi-century, annually-resolved natural archive re-
cords of fire events (e.g., tree-ring dated fire scars) to empirically cali-
brate and validate the rate equation used to model climate-forcing of
fire frequency. Across North America, thousands of localized fire scar
event records exist, which provide important information for defining
fire regimes through time and across diverse climates, vegetation condi-
tions, and ignition types. Some of the major strengths of these datasets
include their ability to capture the effects of low frequency climate var-
iability (e.g., oscillations; Kitzberger et al., 2007), detect non-stationarity
and perturbations (e.g., humans; Taylor et al., 2016), and an ability tofil-
ter post-Industrial Revolution periods when fire regimes underwent
extreme swings in anthropogenic fire activity that distorted or masked
fire-climate associations (Parisien et al., 2016). PC2FM thus offers an im-
provement over purely empirical approaches that relate fire records to
climate observations but fail to be explicit about the mechanistic rela-
tionships (i.e., physics and chemistry), which often limits their out-of-
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sample predictive skill, and complex ecosystem modeling approaches
that continue to face computational constraints (Petter et al., 2020).
Further, PC2FM is consistent with multiple studies that have identified
precipitation and temperature as leading climate variables controlling
fire frequency at local to continental scales (Krawchuk et al., 2009;
Parisien and Moritz, 2009).

In this study, we employ PC2FM to assess how future anthropo-
genic climate change could alter wildland fire frequency and the
pyrogeography of the conterminous United States (CONUS).We use pro-
jections from an ensemble of 20 downscaled GCMs under two scenarios
representing a lower and higher climate forcing scenario (Representative
Concentration Pathway, RCP 4.5 and RCP 8.5, respectively) to project fu-
ture changes in annual fire probability. This approach allows us to:
1) draw on the strengths of PC2FM to estimate climate change impacts
on fire regimes at continental scales based on fundamental physical con-
straints on fire ignition, fire spread, and fuel availability, and 2) robustly
characterize uncertainties and potential for high-impact outcomes in fu-
ture fire regime changes using a large ensemble of high-resolution down-
scaled climate models under alternative scenarios. Using USDA Forest
Service Pyrome boundaries and climatology from a historical baseline
period (1971–2000), we map and explore projected fire regime changes
at management- and planning-relevant scales for both midcentury
(2040–2069) and end of century (2070–2099) conditions. We then ana-
lyze drivers of projected changes and explore the implications of our
results for informing adaptation strategies.

Our use of PC2FM to calculate annual fire probabilities is not meant
to provide a simulation of the true realized year-to-year wildfire igni-
tion and spread probability over some unit area. Rather, the modeled
fire probabilities establish the expected physically-constrained upper
limits of fire frequency. This approach is similar to the use of potential
evapotranspiration rather than actual evapotranspiration, which is
much more difficult to observe and model, to provide an estimate of
the overall available energy supply in water balance modeling (Milly,
1994). As with potential evapotranspiration, modeling an area's ‘fire
potential’ can provide useful information for decision makers seeking
a scale-independent measure of underlying wildland fire conditions.

2. Methods

Through characterization of the role that climate and atmospheric
composition play in constraining both biological (fuels) and combustion
(ignition) processes, PC2FM estimates MFI (in years) unconstrained by
geographic extent or current conditions (e.g., vegetation, land use) as:

MFI ¼ b0 þ b1A0eEa=RT þ b2
1

P2=T
� �

0
@

1
A ð1Þ

where A0 is a proxy term for molecular collision frequency; Ea is the re-
actant activation energy; R is the universal gas constant; T is annual av-
erage temperature; P is annual average precipitation, and b0, b1, and b2
are coefficients estimated from historical fire scar data as described be-
low (Guyette et al., 2012).

The model was calibrated using historical fire scar data spanning
from the 17th to 19th centuries that have provided long-term records
of fire frequency and fire–climate interactions from diverse forested
sites across North America. During model calibration, these coefficients
were estimated using multiple regression analysis together with
bootstrappingmethods. Test statistics such as variance inflation factors,
correlations, residual analysis, normality, variable significance and sta-
bility, and r square were used to validate the model. All variables were
significant (P < 0.001). Multicollinearity among predictor variables
was negligible. Readers are referred to Guyette et al. (2012) for more
details on model concept, calibration, and applications. Note that we
have chosen to report the inverse of the MFI, fire probability, in our re-
sults (Guyette et al., 2017).

When applying PC2FM across a large region like the CONUS, the
resulting patterns of fire probability are driven by patterns of productiv-
ity and the likelihood of fire ignition and spread which are, in turn,
linked to climate (Guyette et al., 2012). Future changes in fire regimes
are therefore predicated on how changing combinations of temperature
and precipitation (along with interrelated humidity, evapotranspira-
tion, and other factors) are related to changing fire probabilities.
Further, as a reaction rate equation, PC2FMhas no geographical bounds,
so fire ecology concepts (e.g., climate–fire interactions) can be ex-
panded through combustion chemistry to potentially reveal unique
fire frequency responses within the climate space (Guyette et al.,
2017; Stambaugh et al., 2018).

The structure of the PC2FM equation, being dependent on just three
physical parameters, also informs our a priori hypotheses about the
expected effects of anthropogenic climate change on fire regimes.
Specifically, mid- and late-century warming across the CONUS would
be expected to increase fire probability for most locations by causing
more evaporative demand, which would increase fuel drying rates in
the absence of commensurate amounts of precipitation. This would
lengthen thewildfire season, particularly in climateswith large seasonal
precipitation cycles, increasing the chances of ignition and facilitating
subsequent fire spread. The relationship with precipitation is non-
linear, however, because increasing amounts of precipitation in fuel-
limited conditions can also increasefire probabilities, to a point, through
enhanced fuel production and connectivity (Guyette et al., 2012).

We project annualfire probability over the 21st centurywith climate
data from the MACAv2 dataset (https://climate.northwestknowledge.
net/MACA/). This dataset was created by statistically downscaling
GCMdata using amodification of theMultivariate Adaptive Constructed
Analogs (MACA)method, which has been shown to be preferable to di-
rect daily interpolated bias correction in regions of complex terrain
through its use of a historical library of observations and multivariate
approach (Abatzoglou andBrown,2012). TheMACAdataset: 1) includes
data downscaled from20GCMs that were part of the CoupledModel In-
tercomparison Project (CMIP5; Taylor et al., 2012); 2) is a high-
resolution (~ 4 km) gridded dataset of surface meteorological condi-
tions; and 3) has been used in a number of studies examining potential
impacts of future climate change (e.g., Sheehan et al., 2015; Wang and
Wang, 2020), including those associated with fire (e.g., Kupfer et al.,
2020). Elevation data are downloaded from https://landfire.gov/ (U.S.
Geological Survey, 2017) and resampled from 30 m to 4 km to match
the spatial resolution of the MACA data.

Fire probability is calculated for each CONUS 4 km grid cell using
MACA data for three time periods: hindcast historical conditions
(1971–2000), mid-century conditions (2040–2069), and late century
conditions (2070–2099). We calculate fire probability for all 20 GCMs
under two greenhouse gas emissions scenarios: RCP 8.5, a higher emis-
sions pathway that serves as a scenario without any specific emissions
reduction target, and RCP 4.5, a lower emissions scenario that is consis-
tent with significant reductions that stabilize emissions, atmospheric
greenhouse gas concentrations and radiative forcing of the climate sys-
tem. Generating results using data from multiple GCMs and under dif-
ferent emissions scenarios is necessary to address uncertainty about
future climatic conditions (e.g., Hawkins and Sutton, 2009; Terando
et al., 2020). Because fire probability is simply the inverse of MFI, we
present only results for fire probability, althoughwe discuss related im-
pacts on fire intervals, where relevant.

We assess the magnitude of change in fire probability from the his-
torical baseline to future periods for each GCM x RCP combination in
terms of both absolute change (Fire probability future– Fire probability
historical) and percent change in fire probability, calculated as:

Fireprobabilityfuture − Fireprobabilityhistoricalð Þ=Fireprobabilityhistoricalð Þ
� 100

ð2Þ
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Calculating absolute and relative measures of fire probability
provides a more complete view of fire regime change, for example,
allowing us to distinguish among areas with similar projected absolute
changes in fire probability but starkly different changes from historical
conditions.

To highlight themanagement implications and risks associatedwith
changingfire regimes,we calculate andmap themeanfire probability of
all grid cells within ‘pyromes’ for historical and future (mid- and late-
21st century) conditions. In much the same way that ecoregions define
relatively large areas of land or water that contain geographically dis-
tinct assemblages of natural communities and species, pyromes are re-
gions with a characteristic historical fire regime. Here, we use pyrome
boundaries mapped by the USDA Forest Service and defined on the
basis of fire season start and end dates, modality, large-fire size, and
total area burned (Short et al., 2020). We also examine changes for 10
regional pyrome groups that span a range of historical fire regimes
and that contain ecosystems and landscapes in which fire management
is actively used to achieve different ecological, economic and societal
objectives (Fig. 1).

Initially, we forecast projected changes in fire probability using
hindcast climate values from the MACA dataset to provide a historical
baseline. To assess how well those values match fire probabilities
derived using observed conditions, we also calculated fire probabil-
ities using climate values from the gridMET dataset (http://www.
climatologylab.org/gridmet.html). This dataset was used to train
the statistical model used in the development of the MACA down-
scaled dataset and so retains the same spatial resolution of 4 km.
As a basis for comparison, we calculated the Mean Absolute Error
(MAE) of predicted fire probability, defined as the absolute value
of the difference between the forecasted values (based on MACA
data from 1971 to 2000) and the ‘actual’ values (based on gridMET

data from 1979 to 2000) for each grid cell within a pyrome under
all 20 GCMs. This provided a distribution of MAE values within
each pyrome for each GCM, allowing us to compare the magnitude
of the mean and standard deviation of the MAE values within each
pyrome for each GCM to the observed mean and standard deviation
of fire probability. Patterns of annual fire probabilities calculated by
PC2FM using the gridMET observational dataset (Fig. 2A) and
hindcast fire probabilities derived from the multi-model mean of
the MACA dataset (Fig. 2B) were very similar. Further, MAE values
across pyromes (calculated based on individual GCM errors) were
very small, ranging from 0.0005 to 0.0144. We therefore use the
MACA hindcast period as our baseline for comparison to the results
from the two projection periods (2040–2069 and 2070–2099).

Finally, we analyze the interactions among climate variables and fire
probability at management-relevant scales in two ways. First, we de-
velop ‘pyrome analogs’ using a process similar to that involved in
climate-analog mapping (e.g., Williams et al., 2007; Hallegatte et al.,
2007). This is done by first determining the fire probability, maximum
temperature, and annual precipitation for each pyrome under the his-
torical baseline conditions and projected late-century conditions for
all 20 GCMs. For each pyrome, we compare its future conditions to the
historical baseline conditions at all other 127 pyromes by calculating
the pairwise multivariate Mahalanobis distance. The Mahalanobis dis-
tance (DM), which is analogous to a multivariate version of Euclidean
distance, is calculated as:

DM Xð Þ2 ¼ XTΣ−1X ð3Þ

where X is the matrix of variable distances between each pyrome for
each GCM and the multi-model mean for that pyrome, and Σ is the
sample covariance matrix. The resulting pyrome with the minimum

Fig. 1. Pyrome groups used to examine regional changes inmid- and late-century fire probability: 1) Cascade Range, 2) Coastal CaliforniaMountains, 3) SierraNevada, 4) Northern Rockies
and Idaho Batholith, 5) Middle Rockies, 6) South Central Deserts, Plains and Uplands, 7) Upper Great Lakes, 8) Texarkana, 9) Northeast, and 10) Southeastern Coastal Plain.
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distance value represents the contemporary pyrome analog with the
most similar conditions (fire probability, temperature, and precipita-
tion) to those projected for the given pyrome in the future. By repeating
the process for all 20 GCMs, we are also able to better characterize the
degree of structural uncertainty across the climate model ensemble
and within the three variables that defined the Mahalanobis distance.

We complement these pyrome analog analyses by graphing all 128
pyromes on the basis of their baseline fire probabilities and the amount
of change that they are projected to experience by the end of the cen-
tury under RCP 8.5. Contours of historical maximum temperature and
precipitation created by R (R Core Team, 2017) are then superimposed
onto these graphs to identify climate-related gradients associated with
pyrome-level fire frequency. These relationships are then generalized
to the scale of the regional pyrome groups to conceptualize broader,
projected regional responses of fire probability within the context of
current climate variables.

3. Results

3.1. Patterns of fire probability

Patterns of projected changes in fire probabilities across the CONUS
emerge by mid-century (Fig. 2C and D) and become clear by century's

end (Fig. 2E and F), especially for the RCP 8.5 scenario (note: values pro-
vided below represent the multi-model means from all 20 GCMs under RCP
8.5 for the end-of-century time period, unless stated otherwise. Complete
pyrome-level results are provided in the supplementarymaterial). For nearly
all of the CONUS, fire probability is projected to increase over the 21st
century, with the magnitude of change varying by region. For example,
fire probabilities for pyromes in the Southeast, which are already among
the highest in the US under baseline conditions (0.21–0.31), are projected
to increase, with annual probability values exceeding 0.35–0.43 in most
pyromes by the end of the century (Fig. 2F). This pattern of even higher
potential annual probabilities in a region where fire historically occurred
with very high frequency extends across the southeastern U.S. from
central Texas to Virginia, with the greatest proportional increases in the
lower Mississippi River valley and Florida panhandle (Fig. 3).

Annual probabilities are also projected to increase in fire-prone
western pyromes, especially those in mountainous areas (Fig. 3). A
few of themost notable changes include pyromes located in: a) the Cas-
cade Range, where fire probabilities more than double from historical
conditions for multiple pyromes; b) the northern Rocky Mountains
and Idaho Batholith (93–94% increases in annual fire probability for
pyromes within the region); c) the middle Rocky Mountains (91–92%
increases); d) the Klamath Mountains and North Coast Ranges in the
Coastal California Mountains Region (74–78% increases); and e) the

Fig. 2. Fire probability as calculated by the Physical Chemistry Fire FrequencyModel for (A) observed historical conditions based on gridMet (1979–2000), (B) the 20-member ensemble
mean conditions for the historical (1971–2000),mid-century (2040–2069) and late century (2070–2099) conditions under two greenhouse gas emissions scenarios: the ‘lower’ emissions
scenario, RCP 4.5 (C and E) and the ‘higher’ emissions scenario, RCP 8.5 (D and F).
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Sierra Nevada (63–81% increases). In the northwestern Cascades, the
projected result is a dramatic decrease in mean fire interval from
roughly 150 years to just over 60 years, with other areas experiencing
similar decreases in fire return intervals.

In pyromes across the Upper Great Lakes (Minnesota, Wisconsin,
Michigan), fire probabilities are historically low (0.05–0.07) but are
projected to increase to 0.11–0.14 by the end of the century (Fig. 2).
While these absolute changes might seem small, they represent a
nearly 120% increase in fire probability from the historical baseline,
which is among the highest percentage increases projected nation-
ally (Fig. 3). The ensemble model results indicate similar magnitude
changes in fire probability across the northern tier of states and into
the Northeastern U.S.

The exception to the prevailing pattern of increased fire probability
is for pyromes in west Texas and eastern NewMexico, where ensemble
fire probability shows minor changes or even decreases in more arid
pyromes (Fig. 3). Pyromes in the region experience slight increases in
fire probability by mid-century (1–3%) and late-century (3–5%) under
RCP 4.5, while predicted changes under RCP 8.5 range from a 3.2%
increase to a 0.4% decrease by mid-century and a 1.9%–7.8% decrease
by the end of the century. The South Central New Mexico Mountains,
the lone mountainous pyrome in an area of high desert and shortgrass
prairie, was the sole exception to this pattern, increasing in fire proba-
bility for both time periods and scenarios (mid-century: 6.6% and 9.8%
and late-century: 8.4% and 7.6%, for RCP 4.5 and 8.5, respectively).

3.2. Changing climate and fire regimes

The identification and display of pyrome analogs for the end-of-
century time period under the RCP 8.5 scenario provides a relatable,

place-based assessment of climate change and illustrates how tempera-
ture and precipitation influence the overall level of uncertainty in
projecting future analog conditions (Fig. 4; see Fig. S1 for the results
for RCP 4.5). Pyromes are rank-ordered along the y-axis on the basis
of their late-century ensemble temperature (Fig. 4A), precipitation
(Fig. 4B), and mean fire probability (Fig. 4C). The analog pyrome, i.e.
the pyrome with the minimum Mahalanobis distance calculated for
each GCM from its temperature, precipitation, and resulting PC2FM
fire probability, is similarly rank-ordered along the x-axis in each
panel. The pyromes ordered along the y-axis each potentially have 20
different pyrome analogs that could be spread across the 128 pyromes
ordered on the x-axis because we compared conditions under all
20 GCMs. Although the order of pyromes differs between the three var-
iables in Fig. 4 (e.g., the warmest pyrome will not necessarily be the
wettest pyrome or the pyrome with the highest fire probability), the
calculation of the closest analog pyrome is only performed once. As
such, the coloring of the cells in the three panels always depicts the
same set of results. Regardless of the cell's location across the three
panels, the color represents the number of climate models which
project that the future climate-fire regime for the pyrome on the y-
axis will be most similar to the corresponding pyrome's historical
climate-fire regime (shown on the x-axis). Each panel is thus a re-
configuration of the single analog pyrome calculation based on an
ordering of pyromes from lowest to highest temperature, precipitation
and fire probability (Fig. 4A).

Results of the pyrome analog analysis highlight the non-linear inter-
action between the climate variable constituents of PC2FM, as well as
the varying magnitude of, and directionality of projection uncertainty
for the two climate variables that propagate into the overall level of
fire probability uncertainty (Fig. 4). For example, the pyrome analogs

Fig. 3. Projected percentage change in annual fire probability across time periods and emission scenarios. A) RCP 4.5 mid-century (2040–2069), B) RCP 4.5 late century (2070–2099),
C) RCP 8.5 mid-century (2040–2069), and D) RCP 8.5 late century (2070–2099). Values are the multimodel mean of PC2FM output using downscaled climate data from 20 GCMs.
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as ordered along the temperature axis (Fig. 4A) are almost universally
spread across cells located in higher ranked positions, reflecting
the role that warming temperatures play in both the Mahalanobis
distance calculation and in determining fire probability in the PC2FM
equation. The analog results for the precipitation axis (Fig. 4B),
however, show a similar level of dispersion along the x-axis, with the
location of analogs straddling both wetter and drier pyromes.
Uncertainty propagates into the fire probability analogs (Fig. 4C), with
some GCMs indicating that a few pyromes whose ensemble mean fire
probability is of high rank have analog pyromes with very low ranked
fire probabilities. This situation could occur when, for example, some
ensemble members project much warmer and drier conditions in the
future, leading to lower fire probabilities associated with a lack of
fuels (i.e. aridification).

Mapping pyrome analogs further illustrates patterns of, and uncer-
tainty in, future fire probability in the context of projected climate
change. Three different pyrome analog maps are shown that depict in-
creasing levels of consensus in the climate model ensemble for the
RCP 8.5 end-of-century scenario (Fig. 5). The Interior Plateau pyrome
is an example of high ensemble uncertainty, with ten different pyromes
possibly being projected as the closest analog to its present day

climate-fire regime (Fig. 5A). Possible analogs stretch from nearby
pyromes immediately equatorward to the fully sub-tropical peninsular
Florida pyrome. Greater model consensus is shown for the Missouri
Coteau pyrome (Fig. 5B), with nearly half of the ensemble GCMs (n =
8)projecting that theNorthernHigh Plains pyromewould be the closest
climate-fire regime analog by the end of the century. However, while
the ensemble uncertainty decreases compared to that shown for the
Interior Plateau in Fig. 5A, the spatial uncertainty increases due to a sin-
gle GCM projecting that the Arizona/New Mexico Mountains, located
more than 1500 km to the southwest of the original pyrome, would
be the closest climate-fire regime analog. Finally, the Western Mojave
Basin and Range pyrome exhibits the highest level of ensemble agree-
ment, with only two possible analog pyromes (Fig. 5C), but these results
represent yet another form of uncertainty, analog uncertainty. Due to its
location, this pyrome already experiences extremes in temperature and
precipitation (relative to the domain extent). The high level of ensemble
agreement (n=17), pointing to the SonoranDesert pyrome as the clos-
est climate-fire regime analog, is likely a function of a lack of additional
pyromes in the domain extent with climate conditions that are even
hotter. As such, this likely represents a ‘no-analog’ climate scenario, at
least with respect to the CONUS.

Fig. 4.Distribution of closest analog pyromeswith respect to annualmaximum temperature (A), annual precipitation (B), and fire probability (C). Filled cells in thematrix plots depict the
number of GCMs projecting a particular pyrome (X-axis) as being the closest analog to the pyrome of interest (Y-axis) for the end-of-century time period under the RCP 8.5 climate
scenario. Analogs were based on the Mahalanobis distance calculated over the three variables, with the historical ensemble mean values used to represent the pyrome's baseline
conditions. See text for further details.
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Spatial summaries of uncertainty in the climate-analog and fire
probability projections are displayed in Fig. 6. Generally and across all
GCMs, there aremore potential analog pyromes projected in themiddle
of the CONUS and fewer in the southeastern, northwestern, and south-
western regions (Fig. 6A, RCP 4.5; Fig. 6B, RCP 8.5). The variation in po-
tential pyrome analogs is consistent with the different forms of
uncertainty associated with the example pyromes in Fig. 5. However,
the Coefficient of Variation (CV) calculated from the ensemble of fire
probability projections indicates that the level of fire probability in a
pyrome is also an important contributing factor to the total projection
uncertainty (Fig. 6C and D).

With respect to the end-of-century RCP 8.5 results (which exhibit
the greatest warming and the highest levels of uncertainty), three dis-
tinct pattern combinations are apparent between the pyrome analogs
and the CV mapping. First, in the southwestern region, there are few
projected pyrome analogs but also high CV values. This likely reflects
the analog uncertainty identified in Fig. 5, and the fact that there are
high CV values further supports this possibility because the relatively
larger ensemble variance (relative to the mean fire probabilities)
would be expected to result in more potential pyrome analogs if they
existed within the CONUS. This contrasts with southeastern pyromes,
which exhibit few alternative pyrome analogs but also have low CV
values. While the small number of pyrome analogs could similarly re-
flect analog uncertainty (particularly in the far southern Florida pyrome
bordering the ocean), the low CV values also suggest that the relatively
highfire probabilities reduce the uncertainty in potential analog futures.
Finally, across the middle of the CONUS, and in particular in the north-
central pyromes, many pyromes have a large number of potential
pyrome analogs, but also have lower CV values. In this region, several
pyromes are clustered together with similar levels of higher fire

probabilities and low variance in projected probabilities. So although
the CV values are generally lower, the number of potential analogs is
high because similar fire regimes are present across a large area, indicat-
ing that small differences in projected changes would still be consistent
with the present-day fire regime characteristics found across a wide
range of pyromes.

Graphing pyromes by their current fire probability versus
projected 21st century changes reinforces findings from the pyrome
analog analysis regarding climatic drivers. Under historical baseline
conditions, there are clear differences in fire probability related to
temperature (Fig. 7A) and precipitation (Fig. 7B), with temperature
generally being the dominant factor. These graphs also demonstrate
that the pyromes projected to experience the greatest percent
changes in fire probability over the remainder of the century are
those in colder climates with moderate to high precipitation
(pyromes in the upper left of Fig. 7A and B).

Aggregating pyrome-level results to the scale of the ten regional
pyrome groups allows us to highlight areas where, for example, fire
probability was historically high (> 0.20) and is projected to increase
moderately (ca. 30–70% increase), including eastern Texas andArkansas
(Texarkana) and the southeastern Coastal Plain (Fig. 7C). Regional
pyromes with lower historical fire probabilities (< 0.08) are arranged
along a gradient of percent change from: 1) the driest region (the
South Central Deserts, Plains and Uplands), which experiences a slight
decline in fire probability as warmer and drier conditions limit biomass
production, to: 2) the northernmost pyromes (the Cascade Range, the
Upper Great Lakes, and the Northeast), where warming conditions
lead to significant increases in fire probability. The spatial structure of
this gradient underscores the importance of interpreting patterns of
fire regime change within the context of regional climatic changes.

Fig. 5. Examples of pyrome analogs as calculatedwith the 20-member climatemodel ensemble for the end-of-century period under the RCP 8.5 climate scenario. Analogs are based on the
Mahalanobis distance calculated from three variables (annualmaximumtemperature, annual precipitation, and annualfire probability). Values for the ‘Original Pyrome’ are taken from the
climate model ensemble mean calculated over the historical period (1971–2000).
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4. Discussion

4.1. Patterns and climate drivers of changing fire regimes

Our analyses point to increases in fire potential, expressed as the
upper limits of fire probability across the CONUS, that are discernible
by mid-century and manifest broadly across pyromes and regions by
2100, with few exceptions. These predicted changes could significantly
restructure fire regime patterns across the CONUS, resulting in novel
ecological and societal effects. Increasing wildfire frequencies in many
forested pyromes, for example, have been linked to conversion to
shrublands, which can drastically alter ecosystem functioning and ser-
vices (e.g., Coop et al., 2020).

While historical fire regimes are structured along gradients of both
temperature and precipitation (Fig. 7), rising temperatures are the pri-
mary cause of modeled increases in fire probabilities due to the uniform
directionality of temperature change (warming; Fig. 4A) that positively
influences the chemical reaction environment through enhanced pho-
tosynthetic rates and increased thermal molecular energy (Guyette
et al., 2012). The projected precipitation changes, in contrast, are bi-
directional (both drier and wetter conditions) in space and across
GCMs (Fig. 4B). This outcome has the effect of increasing projection un-
certainty (Fig. 4C), which is then compounded by the nonlinear effect of
precipitation in the PC2FM equation.

When interpreted within the context of historical fire patterns and
current management concerns, our results underscore the significance
of projected changes in fire probability. Fires are historically infrequent
in northwestern (e.g., the Cascade Range), northern (e.g., the Upper
Great Lakes), and northeastern pyromes, but are predicted to experience
50–100% increases in potential fire probabilities under both RCP 4.5 and
RCP 8.5 by the end of the century as productivity increases (due to in-
creased temperature) and fuels experience greater drying (due to in-
creased evaporative demand and/or decreased precipitation; Fig. 3). In
recent decades, largewildfires in these areas have not only had surprising

effects (e.g., burning in areas normally too cold and wet to ignite), but
have inundated large metropolitan areas with persistent and hazardous
smoke levels (e.g., Seattle, Portland, Willamette Valley, and Vancouver,
BC; Zou et al., 2019). Pyromes in other drywestern forests in the northern
and middle Rocky Mountains, including the Yellowstone Basin, have a
history of similarly large and costly wildfires that challenge current fire
suppression resources. Projected changes in fire regimes in northern
California (e.g., the Sierra Nevada, Klamath Mountains, and North Coast
Ranges) are likewise noteworthy given that state's record fire year in
2020, when wildfires burned ca. 1.7 million ha in the state. These
projected fire probability increases occur in pyromes with recent
megafires that rank among the largest, most lethal and most damaging
in the state's recorded history, including the Tubbs Fire (2017), Camp
Fire (2018), Carr Fire (2018), Rim Fire (2013), and the majority of the
2020 wildfires, including the August Complex, the largest fire on record.

Beyond the prevalent pattern of increasing fire probabilities across
the CONUS, our approach allows for nuanced analysis and identification
of nonlinear interactions among drivers of potential changes in fire re-
gimes. In arid locations such as the Chihuahuan Desert, West Texas
Plateau, and shortgrass prairies of eastern NewMexico, future fire prob-
ability is projected to change very little under the RCP 4.5 scenario or to
even decrease under RCP 8.5 as warming and drying conditions
decrease site productivity and limit fire return intervals through
aridification. In short, similar patterns of warming and drying condi-
tions, as is projected across much of the western CONUS, can result in
markedly different responses depending on prevailing site conditions.

Patterns of changingfire probability in the southeasternUSAprovide
an example of the practical importance of understanding the complex
patterns and drivers of change. Historically, this region had the highest
fire probability values in the CONUS (Fig. 2A), with PC2FM projections
and observedMFI's of 2–4 years, confirmed by fire-scar history evidence
fromnumerous studies (Stambaugh et al., 2011; Stambaugh et al., 2017;
Rother et al., 2020). While increases in projected fire probabilities ex-
ceed 50%, fires already occur frequently in this area, primarily in the

Fig. 6. End of century analog and fire probability uncertainty. Top row: number of different analog pyromes projected for each pyrome by the end of the century from the downscaled
climate model ensemble for the A) RCP 4.5 and B) RCP 8.5 scenarios. Bottom row: the coefficient of variation calculated from the climate model ensemble projections of end-of-
century fire probability for the C) RCP 4.5 and D) RCP 8.5 scenarios.
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form of prescribed fires used to reduce hazards and maintain habitat
(Melvin, 2018). Thus, the ecological consequences of that projected in-
crease in the Coastal Plain may be negligible. However, because pre-
scribed fire is the dominant source of burned area in the Southeast,
any changing climatic patterns could further reduce prescribed fire ac-
tivities (Kupfer et al., 2020) and exacerbate wildfire risk (Prestemon
et al., 2016; Terando et al., 2017; Carter et al., 2018).

4.2. Application to adaptation planning

With the growing consensus that changing climates will result in
widespread increases in fire frequency over the remainder of the 21st

century (Moritz et al., 2014; Carter et al., 2018), the development of pro-
activemitigation and adaptation strategies will continue to benefit from
access to models that facilitate a rigorous assessment of potential
changes in fire regimes at a range of spatial scales. Using a large ensem-
ble of downscaled climate models as inputs into PC2FM allows for a
more thorough treatment of known uncertainties that is critical for
long-term fire and conservation planning. Confidence assessments of
ensemble model predictions, particularly through the lens of analog
pyromes, will allowmanagers to evaluate the present value of manage-
ment actions which often take decades to realize desired outcomes
(e.g., silvicultural decisions and species recovery strategies). A similar
approach has already shown relevance in managed mitigation

Fig. 7. Relationships between climate and changing fire probabilities. (A) and (B) Scatterplots of fire probability from PC2FM for 128 pyromes in the contiguous U.S. under historical
baseline conditions (1971–2000) vs. projected changes by the end of the 21st century under RCP 8.5. Contours of baseline temperature (A) and precipitation (B) were derived using R.
(C) Fire probability from PC2FM for 10 regional pyrome groups under historical baseline conditions (1971–2000) vs. projected changes by the end of the 21st century under RCP 8.5.
Values represent the means of all pyromes within the group. Pyrome locations are shown in Fig. 1.
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strategies and long-term planning for prescribed fire activities (Kupfer
et al., 2020).

Our results provide value for planning the scale, extent, or relevance
ofmitigation strategies and treatmentswithin pyromes projected to see
significant shifts in fire probabilities (Fig. 6). Because species are
adapted to the characteristics of past fire regimes, particularly fire fre-
quency, modifications to fire regimeswrought by future climate change
may slow or accelerate species range movements that are projected or
already underway (Iverson and Prasad, 2001). Understanding potential
changes in future fire regimes, including the spatial distribution of
analog pyromes, will be helpful for predicting ecological trajectories,
complex ecosystem feedbacks in fire-prone communities and for
informing new fire management and conservation strategies (Ager
et al., 2017). As an example, the Department of Defense has mandated
that installations address climate change considerationswhen updating
or revising their.

Integrated Natural Resource Management Plans every five years.
Our results provide insights into potential changes in fire regimes at a
scale and time horizon appropriate for supporting such analyses
(e.g., Stein et al., 2019).

4.3. Caveats

The results of this study are subject to several caveats. First, the fire
probabilities presented are calculated at the scale of 4 kmpixels, the res-
olution of the downscaled climate model output, and then averaged for
individual pyromes. We recognize the limitations of PC2FM fire proba-
bility predictions are such that inferences made involving processes oc-
curring at these (or even finer) scales must be taken with caution. At
these scales, idiosyncrasies of exogenous factors, including land use,
non-native species, and human dimensions will play increasingly im-
portant (if not dominant) roles in determining the actual annualized
fire probability. Similarly, this model combination and ensemble
approach does not include local factors of soils, vegetative hysteresis,
or non-native species in predictions of potential fire probability. For
example, projected changes in fire probability may shift in response to
invasions by non-native species that alter fuel availability, such as the
potential expansion of buffelgrass (Cenchrus ciliaris) in areas of the
South Central Deserts, Plains, and Uplands (e.g., de Albuquerque et al.,
2019). Such disruptions may affect the calibration of PC2FM by
disrupting the expected equilibria between climate and fuels in these
systems over long time periods. Nevertheless, the goodmodel fit exhib-
ited by PC2FM to historical fire frequency data (Guyette et al., 2012)
increases confidence in the interpretability of these results as they relate
to potential ecological changes under altered fire regimes.

Additionally, while we assume that our analysis captures a signifi-
cant portion of the true uncertainty about 21st century climatic change
in response to anthropogenic greenhouse gas emissions, we do not
claim to capture the full range of uncertainty. It is possible that this anal-
ysis could still include bias due to errors and simplified representations
of physical processes in the downscaling method and in the numerical
climate models. Further work to improve the calibration and accuracy
of PC2FM would also be beneficial. For example, understanding the in-
fluence of seasonal, as opposed to annual climate variables on fire prob-
ability, would potentially increase confidence and salience of PC2FM
without significantly increasing model complexity. When taken in the
context of analog fire regimes, these results can be valuable in assessing
the scale, extent, or relevance of mitigation strategies applied within
pyromes projected to undergo significant shifts in fire probabilities.

5. Conclusions

The complexity of pattern and process that characterize wildland fire
regimes can limit the ability to conduct comprehensive analyses of the
potential impacts of anthropogenic climate change across an area as
large as the CONUS. Such analyses are a critical component of risk

assessments that could be used by decision makers during the develop-
ment of adaptation plans, as well as in the broader global effort to under-
stand the myriad costs associated with the continued use of fossil fuels.
Our results represent a rigorous, physically-based assessment of spatial
patterns and uncertainties associated with changing potential fire proba-
bilities, which can form a common base for comparison across vastly
different management, habitat, and land use contexts. Subsequent inter-
pretation of predicted future fire probabilities can be informed by domi-
nant land uses (forested vs. agricultural) and management actions,
whichmodify howfire potential is actualizedwithin a pyrome. For exam-
ple, increased potential fire probability will understandably be less of a
concern in areas currently dominated by row crop agriculture and more
of a concern in wildlands that intermix with human communities.

In contrast, rigorously characterizing uncertainty in projections of
shifting fire regimes through more complex ecosystem process-based
modeling (e.g., Scheller et al., 2007; Sitch et al., 2008; Medvigy et al.,
2010; Liang et al., 2017) would pose a significant challenge at the conti-
nental scale given the data and computational requirements. In turn,
this implicit domain extent and resolution constraint limits the ability
of decision makers to use these results to inform more comprehensive
adaptation strategies in regions with significantly different fire regimes
in close proximity (e.g., California). While more complex ecosystem
models will continue to represent a critical tool to explore local-scale
processes and carbon cycling in response to climate change, it is not cur-
rently feasible to conduct a robust uncertainty analysis as part of a cli-
mate change assessment on the scale represented in this study.
Refining models and methods that provide greater certainty in projec-
tions of future climate-fire relationships will continue to be a priority
in many management contexts as a means to facilitate and accelerate
adaptation to changing climates.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.147872.
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