12 research outputs found

    Peranan Economic Value Added (Eva) dalam Mengukur Kinerja Perusahaan

    Full text link
    As the economic condition becoming more global, business competition is becoming tighter. Effectiveness and efficiency have become very important things. companies also need bigger capital in order to sustain in the competition. Companies can get higher capital by issuing stocks to the market. This condition has been a challenge for the companies to attract investors to invest their funds in their companies. in this effort, companies shouldn\u27t only describe their performance financial statements, but also by performance measurement such as Economic value Added (EVA). EVA can help managers to improve their performance and provide consideration for the investor

    Peranan Economic Value Added (Eva) dalam Mengukur Kinerja Perusahaan

    Full text link
    As the economic condition becoming more global, business competition is becoming tighter. Effectiveness and efficiency have become very important things. companies also need bigger capital in order to sustain in the competition. Companies can get higher capital by issuing stocks to the market. This condition has been a challenge for the companies to attract investors to invest their funds in their companies. in this effort, companies shouldnt only describe their performance financial statements, but also by performance measurement such as Economic value Added (EVA). EVA can help managers to improve their performance and provide consideration for the investor

    Gene expression profile of the skin in the 'hairpoor' (HrHp) mice by microarray analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcriptional cofactor, Hairless (HR), acts as one of the key regulators of hair follicle cycling; the loss of function mutations is the cause of the expression of the hairless phenotype in humans and mice. Recently, we reported a new <it>Hr </it>mutant mouse called 'Hairpoor' (<it>Hr<sup>Hp</sup></it>). These mutants harbor a gain of the function mutation, T403A, in the <it>Hr </it>gene. This confers the overexpression of HR and <it>Hr<sup>Hp </sup></it>is an animal model of Marie Unna hereditary hypotrichosis in humans. In the present study, the expression profile of <it>Hr<sup>Hp</sup>/Hr<sup>Hp </sup></it>skin was investigated using microarray analysis to identify genes whose expression was affected by the overexpression of HR.</p> <p>Results</p> <p>From 45,282 mouse probes, differential expressions in 43 (>2-fold), 306 (>1.5-fold), and 1861 genes (>1.2-fold) in skin from <it>Hr<sup>Hp</sup>/Hr<sup>Hp </sup></it>mice were discovered and compared with skin from wild-type mice. Among the 1861 genes with a > 1.2-fold increase in expression, further analysis showed that the expression of eight genes known to have a close relationship with hair follicle development, ascertained by conducting real-time PCR on skin RNA produced during hair follicle morphogenesis (P0-P14), indicated that four genes, <it>Wif1</it>, <it>Casp14</it>, <it>Krt71</it>, and <it>Sfrp1</it>, showed a consistent expression pattern with respect to HR overexpression in vivo.</p> <p>Conclusion</p> <p><it>Wif1 </it>and <it>Casp14 </it>were found to be upregulated, whereas <it>Krt71 </it>and <it>Sfrp1 </it>were downregulated in cells overexpressing HR in transient transfection experiments on keratinocytes, suggesting that HR may transcriptionally regulate these genes. Further studies are required to understand the mechanism of this regulation by the HR cofactor.</p

    Present and Future of Surface-Enhanced Raman Scattering.

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article
    corecore