634 research outputs found

    Predmet istraživanja: kataliza razvijanja vodika na živinim elektrodama

    Get PDF
    Cases of electrochemical hydrogen evolution catalysis often represent problems that electrode kineticists find difficult to solve. On the other hand, they offer chances of finding electrochemical methods for specific and sensitive studies of a variety of substances, notably those of biological importance.Procesi katalize elektrokemijskog razvijanja vodika često predstavljaju teško rješive probleme za istraživače kinetike elektrodnih reakcija. Oni se, međutim, mogu iskoristiti za razvoj jedinstvenih i osjetljivih elektrokemijskih metoda za proučavanje različitih tvari, posebice onih od biološke važnosti. U radu se opisuje povijest istraživanja kataliziranog razvijanja vodika na živinim elektrodama i navode se tri tipa katalizatora

    Limb darkening in spherical stellar atmospheres

    Full text link
    (Abridged) Context. Stellar limb darkening, I({\mu} = cos{\theta}), is an important constraint for microlensing, eclipsing binary, planetary transit, and interferometric observations, but is generally treated as a parameterized curve, such as a linear-plus-square-root law. Many analyses assume limb-darkening coefficients computed from model stellar atmospheres. However, previous studies, using I({\mu}) from plane- parallel models, have found that fits to the flux-normalized curves pass through a fixed point, a common {\mu} location on the stellar disk, for all values of T eff, log g and wavelength. Aims. We study this fixed {\mu}-point to determine if it is a property of the model stellar atmospheres or a property of the limb-darkening laws. Furthermore, we use this limb-darkening law as a tool to probe properties of stellar atmospheres for comparison to limb- darkening observations. Methods. Intensities computed with plane-parallel and spherically-symmetric Atlas models (characterized by the three fundamental parameters L\star, M\star and R\star) are used to reexamine the existence of the fixed {\mu}-point for the parametrized curves. Results. We find that the intensities from our spherical models do not have a fixed point, although the curves do have a minimum spread at a {\mu}-value similar to the parametrized curves. We also find that the parametrized curves have two fixed points, {\mu}1 and {\mu}2, although {\mu}2 is so close to the edge of the disk that it is missed using plane-parallel atmospheres. We also find that the spherically- symmetric models appear to agree better with published microlensing observations relative to plane-parallel models.Comment: 8 pages, 8 figures, figures 4 and 6 have lower resolution. A&A in pres

    Using limb darkening to measure fundamental parameters of stars

    Full text link
    Context. Limb darkening is an important tool for understanding stellar atmospheres, but most observations measuring limb darkening assume various parameterizations that yield no significant information about the structure of stellar atmospheres. Aims. We use a specific limb-darkening relation to study how the best-fit coefficients relate to fundamental stellar parameters from spherically symmetric model stellar atmospheres. Methods. Using a grid of spherically symmetric Atlas model atmospheres, we compute limb-darkening coefficients, and develop a novel method to predict fundamental stellar parameters. Results. We find our proposed method predicts the mass of stellar atmosphere models given only the radius and limb-darkening coefficients, suggesting that microlensing, interferometric, transit and eclipse observations can constrain stellar masses. Conclusions. This novel method demonstrates that limb-darkening parameterizations contain important information about the structure of stellar atmospheres, with the potential to be a valuable tool for measuring stellar masses.Comment: 8 pages, 6 figures, 2 tables, A&A accepte

    Extended-Source Effect and Chromaticity in Two-Point-Mass Microlensing

    Full text link
    We explore the sensitivity of two-point-mass gravitational microlensing to the extended nature of the source star, as well as the related sensitivity to its limb darkening. We demonstrate that the sensitive region, usually considered to be limited to a source-diameter-wide band along the caustic, is strongly expanded near cusps, most prominently along their outer axis. In the case of multi-component caustics, facing cusps may form a region with a non-negligible extended-source effect spanning the gap between them. We demonstrate that for smaller sources the size of the sensitive region extending from a cusp measured in units of source radii increases, scaling as the inverse cube root of the radius. We study the extent of different sensitivity contours and show that for a microlensed Galactic bulge giant the probability of encountering at least a 1% extended-source effect is higher than the probability of caustic crossing by 40-60% when averaged over a typical range of lens-component separations, with the actual value depending on the mass ratio of the components. We derive analytical expressions for the extended-source effect and chromaticity for a source positioned off the caustic. These formulae are more generally applicable to any gravitational lens with a sufficiently small source. Using exactly computed amplifications we test the often used linear-fold caustic approximation and show that it may lead to errors on the level of a few percent even in near-ideal caustic-crossing events. Finally, we discuss several interesting cases of observed binary and planetary microlensing events and point out the importance of our results for the measurement of stellar limb darkening from microlensing light curves.Comment: 25 pages, 16 figures; accepted by The Astrophysical Journal. Discussion of probabilities and source-size dependence extended, figures adde

    Effect of NLTE model atmospheres on photometric amplitudes and phases of early B-type pulsating stars

    Full text link
    We study all possible sources of inaccuracy in theoretical values of the photometric observables, i.e. amplitude ratios and phase differences, of early B-type main sequence pulsators. Here, we discuss effects of parameters coming from both models of stellar atmospheres and linear nonadiabatic theory of stellar pulsation. In particular, we evaluate for the first time the effect of the departure from the LTE approximation. The atmospheric input comes from line-blanketed, LTE and NLTE plane-parallel, hydrostatic models. To compute the limb-darkening coefficients for NLTE models, we use the Least-Square Method taking into account the accuracy of the flux conservation. We present effects of NLTE atmospheres, chemical composition and opacities on theoretical values of the photometric observables of early B-type pulsators. To this end, we compute tables with the passband fluxes, flux derivatives over effective temperature and gravity as well as the non-linear limb-darkening coefficients in 12 most often used passbands, i.e. in the Str\"omgern system, uvbyuvby, and in the Johnson-Cousins-Glass system, UBVRIJHKUBVRIJHK. We make these tables public available at the Wroc{\l}aw HELAS Web page, http://helas.astro.uni.wroc.pl.Comment: 13 pages, 2 tables, 17 figues submitted to A&

    Resolving Stellar Atmospheres I: The H alpha line and comparisons to microlensing observations

    Full text link
    We present work on H alpha spectral line characteristics in PHOENIX stellar model atmospheres and their comparison to microlensing observations. We examine in detail the H alpha equivalent width (EW) and the line shape characteristics for effective temperatures of 4500K< Teff < 5600K where H alpha is a strong spectral feature. We find that H alpha EW in models calculated under the assumption of local thermodynamic equilibrium (LTE) is up to 15% smaller than in models without this assumption, non-LTE models (NLTE) and that line shapes vary significantly for the two model types. A comparison with available high quality microlensing data, capable of tracing H alpha absorption across the face of one G5III giant, shows that the LTE model that fits the EW best is about 100K hotter than and the best-fitting NLTE model has a similar Teff as predicted by the spectral type analysis of the observed star but agree within the uncertainties of the observationally derived temperature. Neither LTE nor NLTE models fit the line shape well. We suspect unmodelled chromospheric emission. Line shape diagnostics suggest lower gravities than derived for the star and are unacceptable low in the case of the LTE models. We show that EW alone is insufficient for comparison to stellar model atmospheres, but combined with a new shape parameter we define is promising. In stellar parameter ranges where the H alpha line is strong, a NLTE approach of modeling stellar atmospheres is not only beneficial but mandatory.Comment: 11 pages, 9 figures, accepted to Astronomy & Astrophysic

    Gravitational microlensing as a test of stellar model atmospheres

    Get PDF
    We present calculations illustrating the potential of gravitational microlensing to discriminate between classical models of stellar surface brightness profiles and the recently computed ``Next Generation'' models of Hauschildt et al. These spherically-symmetric models include a much improved treatment of molecular lines in the outer atmospheres of cool giants -- stars which are very typical sources in Galactic bulge microlensing events. We show that the microlensing signatures of intensively monitored point and fold caustic crossing events are readily able to distinguish between NextGen and the classical models, provided a photometric accuracy of 0.01 magnitudes is reached. This accuracy is now routinely achieved by alert networks, and hence current observations can discriminate between such model atmospheres, providing a unique insight on stellar photospheres.Comment: 4 pages, 4 figures, Astronomy & Astrophysics (Letters), vol. 388, L1 (2002

    Význam Ilkovičovy rovnice v elektrochemii

    Get PDF

    Can microlensing fold caustics reveal a second stellar limb-darkening coefficient?

    Full text link
    Dense high-precision photometry of microlensed stars during a fold-caustic passage can be used to reveal their intensity profiles from which the temperature of the stellar atmosphere as function of fractional radius can be derived. While the capabilities of current microlensing follow-up campaigns such as PLANET allow a precise measurement of linear limb-darkening coefficients, the residual signal of a second coefficient characterizing square-root limb darkening is ~ 25 times smaller which prevents a proper determination except for unlikely cases of very high caustic-peak-to-outside relative magnifications with no adequate event being observed so far or for source stars passing over a cusp singularity. Although the presence of limb darkening can be well established from the data, a reliable measurement of the index of an underlying power-law cannot be obtained.Comment: 4 pages with 4 EPS figures embedded, LaTeX2e using mn2e.cls. Final version, minor changes. This is a preprint of an Article accepted for publication in Monthly Notices of the Royal Astronomical Society, (C) 2004 The Royal Astronomical Societ
    corecore