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Chapter 1

Introduction

The effect of gravitational lensing occurs in many different astrophysical settings. All involve

light from a background source passing on its way to the observer through the gravitational field

of a foreground object. If the foreground object is sufficiently massive, sufficiently compact,

and sufficiently aligned with the line of sight to the background source, the observer may

detect various lensing phenomena caused by gravitational deflection of light: magnification and

distortion of the observed source, amplification of its flux, and possibly even multiple imaging.

Since its theoretical prediction in the 1930s (Einstein 1936; Zwicky 1937), it took gravi-

tational lensing more than four decades to enter the realm of observational astronomy. The

announcement of the discovery of a doubly imaged quasar by Walsh et al. (1979) started its

progression from being a mere novelty to its current role of a versatile and often unique astro-

physical tool. Observations of gravitational lensing effects have been used since then for a wide

range of objectives, from the detection of exoplanets around stars nearly as far as the Galactic

center to the mapping of the total matter distribution in galaxy clusters.

More recent studies, kicked off by the COSMOS project (Massey et al. 2007), use weak grav-

itational lensing in combination with source redshifts to measure “three-dimensional” maps of

the cosmological large-scale structure. Analyses of the gravitational lensing effect on the small-

angular-scale anisotropies of the cosmic microwave background measured by the PLANCK

mission yielded low-resolution all-sky maps of the dark matter distribution (Planck Collabora-

tion 2014, 2020). Upcoming weak-lensing surveys will utilize terrestrial and space telescopes

including the Vera C. Rubin Observatory, Euclid, and the Nancy Grace Roman Space Telescope
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2 Gravitational Lensing

to generate 3D high-resolution maps of the overall cosmological matter distribution out to the

faintest detectable galaxies. For an overview of gravitational lensing and its diverse applications

we recommend the books by Schneider et al. (1992), Schneider et al. (2006), Dodelson (2017),

and Congdon & Keeton (2018). This lineup of also provides an illustration of the evolution of

the field over three decades. As a complement, Petters et al. (2001) provide more mathematical

background for the theory of gravitational lensing.

The presented thesis compiles our contributions to gravitational lensing research from recent

years. The six papers included in the appendices range from 2015 to 2021, with the last

two included still in the form of preprints. They cover topics from three distinct areas, each

studied with different students: Galactic microlensing by three-body lenses with Kamil Daněk,

microlensing of quasar X-ray emission with Lukáš Ledvina, and the lensing impact of small-

scale substructure in galaxy-cluster lenses with Michal Karamazov and Lukáš Timko. In the

following paragraphs we indicate our motivations to study these topics.

By the time of writing, gravitational microlensing surveys and follow-up collaborations have

published the analyses of 11 events with clear detections of lensing by three-body systems, as

described further in Section 4.3. Four of them involved stars with two planets, and seven of the

lenses were binary stars with a planet. It is very likely that more such events could be found

in the data archives of the projects. However, the analysis of their light curves is complicated

by the lack of insight into the diversity of their structures, which is driven by the geometry

of triple-lens caustics and critical curves. Our work on triple lenses was driven by an effort to

identify their different lensing regimes and to give a comprehensive overview of their critical-

curve topologies and caustic structures. Three papers describing our results are included in

Appendices A, B, and C.

One of the intriguing aspects of quasar microlensing, in which microlensing by stars in a

lens galaxy modulates the brightness of a lensed quasar image, is its sensitivity to the surface

brightness distribution of the quasar accretion disk. The measured light curve could thus be

used to resolve the emitting region of the quasar. Its brightness distribution could be studied

in a similar way as in the case of the source stars in Galactic microlensing caustic-crossing

events, as shown in our previous work (Heyrovský 2003; Fouqué et al. 2010; Heyrovský &
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Sasselov 2000; Heyrovský et al. 2000). In the case of quasar microlensing in the optical regime,

the size of the emitting region is often comparable or larger than the local structures of the

caustic network. The microlensing light curve is then affected by a degenerate combination of

the brightness distribution on the source and the local caustic-network structure of the lens.

However, since the size of the emitting region is generally smaller for shorter wavelengths (Alloin

et al. 2006), in X-rays microlensing can be described by simple fold-caustic crossings, using local

linear approximations of the caustic. Since hard X-ray emission from quasars often features a

prominent iron Kα line, X-ray spectroscopy could reveal changes in its line profile as observed

by Chartas et al. (2012). Our goal was to study microlensing variations in the spectral line

profile based on simulations using a relativistic model of emission from the central region of

the quasar accretion disk. The results of our study are presented in the paper in Appendix D.

Arguably the most impressive outcome of galaxy-cluster lensing research is the mapping

of their total matter distribution. Current cluster mass reconstructions combine weak-lensing

mapping with a strong lensing analysis of the inner region of the cluster, individually treating

detected strong lensing by cluster-member galaxies. One of the ongoing goals of such recon-

structions is to increase the spatial resolution of these maps to detect smaller substructures

in the matter distribution. This would provide observational data on their abundance, which

could be compared with the results of cosmological structure-formation simulations. Within

the galaxy-cluster environment, substructures that could be revealed by their lensing signature

include dim cluster galaxies (with low surface brightness or small size), isolated dark-matter

subhalos or other concentrations, or possibly even isolated wandering supermassive black holes.

The objective of our research was to take a bottom-up approach and first study the lensing

influence of a single massive object in the dark-matter halo of the cluster. The low number of

parameters of such a simple model permits a detailed systematic study of its properties. Two

papers describing our results are included in Appendices E and F.

The introductory Chapters 2–6 are intended neither as a review, nor as a text-book-style

exposition. Their purpose is to provide a brief introduction to gravitational lensing and its

concepts that are explored in the included papers. Chapter 2 describes the basic setting of

gravitational lensing and introduces the “tools of the trade”, starting with the lens equation
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and ending with lens convergence, shear, and phase. These concepts are illustrated in Chapter 3

for the fundamental gravitational lens model, that of a point-mass lens. The model is not

merely an academic exercise; it can be used to describe microlensing by stars in our Galaxy.

A combination of two point masses can be used to describe microlensing by binary stars or by

stars with a planet. A combination of three point masses can describe microlensing by a star

with two planets, or even a star with a planet with a moon. Galactic microlensing by such lenses

is discussed in Chapter 4. Larger systems such as galaxies are better described by continuous

matter distributions. Strong lensing by galaxies, and the role of their stellar populations in

quasar microlensing are the subjects of Chapter 5. Galaxy clusters exhibit a range of lensing

phenomena at different scales, as discussed in Chapter 6. In particular, the analysis of their

weak lensing provides a means to map their total mass distribution. We conclude in Chapter 7

by commenting on directions of further research on the presented topics.



Chapter 2

Gravitational Lensing Concepts

2.1 Setting the Scene

The astrophysical setup of gravitational lensing involves an observer, a background source

of light or, more generally, electromagnetic radiation (the “source” in lensing terminology), and

a massive foreground object closely aligned with the line of sight to the source (the “lens” in

lensing terminology). Due to deflection of light in the gravitational field of the lens the observer

does not see the source at the same position as in the absence of the lens. Instead, the observer

sees one or more images with different brightness and shape in directions displaced from the

direction to the source. This simple scenario opens up the broad field of gravitational lensing

research, which studies the connection between the properties of the images, of the lens, and

of the source. Depending on the specific astrophysical objects involved, observations of image

position, shape, and their possibly variable brightness can reveal unique information on the

structure of the lens and the source.

A rigorous physical analysis of the described setup would involve studying the propagation

of electromagnetic waves in the space-time metric corresponding to the matter distribution of

the specific lens in a given cosmological background. In addition, the source, lens, and observer

move along their general trajectories, and the source emission and the lens configuration may

vary with time. Tackling the initially simple setup in its full generality suddenly looks, and is,

daunting. Fortunately, several approximations and assumptions relevant to most scenarios of

interest can be made to reduce the analysis to a computationally feasible level. For example,

5
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the assumption of geometric optics replaces the study of wave propagation by the study of

photon geodesics, light rays, and light-ray bundles. The justification is non-trivial only in the

vicinity of lens caustics, where diffraction patterns arise in wave optics (Herlt & Stephani 1976;

Deguchi & Watson 1986; Nye 1999). However, even there, detecting deviations from geomet-

ric optics would require (near-)monochromatic observations of extremely compact sources of

coherent emission, such as pulsars in distant galaxies (Schneider et al. 1992). Typical grav-

itational lensing observations involve broad-band observations of lensed quasars, galaxies, or

non-degenerate stars in our Galaxy, for all of which the assumption is justified.

In typical gravitational lensing, the lens is associated neither with the source nor with

the observer, both of which are asymptotically distant from it. The light ray can then be

replaced by its incoming and outgoing asymptotes, i.e., straight lines at local scales or photon

geodesics at cosmological scales. The influence of the lens merely causes the (oriented) deflection

angle between them. We note that this approximation is not valid for example in the case of

“self-lensing” of emission from accretion disks by their central black hole. Neither can it be

assumed in cosmic shear studies, which explore the lensing effect of the full cosmological matter

distribution between the source and the observer.

These cases also naturally form the main exceptions to the widely used thin-lens approxi-

mation, in which the line-of-sight depth of the matter distribution of the lens is negligible in

comparison with the distances between the observer, lens, and source. The lens is thus con-

sidered to lie at a single distance from the observer, which defines the lens plane (or image

plane) perpendicular to the line of sight. The source plane is defined analogously as the plane

perpendicular to the line of sight at the distance of the source. In the thin-lens approximation,

the three-dimensional density distribution of the lens can be integrated along the line of sight to

yield the two-dimensional column density (or surface density) in the lens plane. The amplitude

and orientation of the deflection angle is then a function of the position at which the light ray

passes through the lens plane.

The lens is generally assumed to be in a quasi-static configuration, meaning that its structure

does not change significantly on the light-deflection timescale. For example, for a compound

lens with orbiting components this requires non-relativistic orbital velocities. The lensing by
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such a lens with internal motions can then be studied as a quasi-static sequence of lensing by

lenses with different two-dimensional projected configurations. Finally, the lensing is usually

described in the rest frame of the (center of mass) of the lens. For similar reasons as in the case

of internal lens motions, the relative velocities of the observer, lens, and source, are usually

assumed to be non-relativistic. Nevertheless, constant relativistic velocities are straightforward

to account for by Lorentz transformations, which merely introduce a velocity dependence of

the lensing parameters (Heyrovský 2005).

2.2 Lens Equation and Lens Characteristics

Under the assumptions described in Section 2.1, gravitational lensing can be illustrated by

the sketch in Figure 2.1. The observer (O) observes light from the source (S) at a distance

Ds. En route to the observer the light is deflected by the lens (L) at a distance Dl from the

observer and Dls from the source. Details of specific lensing situations are usually studied in

the depicted lens and source planes, which are perpendicular to the line of sight passing from

the observer through the lens position toward the source.

Positions in the source and lens planes are customarily divided by their respective distances

from the observer, yielding angular positions in radians. In Figure 2.1, a light ray marked by

the solid red line originates from point S at position β, which lies in the source plane at an

angular separation |β| from the line of sight to the lens. The light ray passes through a point

at position θ in the lens plane, where it is deflected by an angle α(θ) toward the observer. The

observer thus sees an image I in the direction θ, displaced from the direction β to the source.

At a local, Galactic scale, the line-of-sight distances Ds, Dl, and Dls can be approximated by

simple coordinate distances. At a cosmological scale, the distances correspond to the respective

angular diameter distances. At either scale, the angles β, θ, α in typical gravitational lensing

settings are tiny (≲ 10−4 even for galaxy-cluster lensing), so that we may replace projected

perpendicular distances in the source plane by arc lengths. The projected triangle marked in

the source plane in Figure 2.1 illustrates the gravitational lens equation,

β = θ − Dls

Ds
α(θ) , (2.1)

which connects the position of the source β with the position of its image θ. Note that if
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Dls

DlDs

S

I

L

O

SOURCE  PLANE

LENS  PLANE

β
θ

α

Figure 2.1: Gravitational lensing configuration. Bullets: positions of the observer (O), the lens (L),

the source (S), and the image (I). Solid red line: light ray from source to observer; dashed red line:

direction to image perceived by observer. Denoted angles: angular displacement of the source (β)

and the image (θ) from the line of sight to the lens; gravitational deflection angle α. Line-of-sight

distances between the observer and the source and lens planes are marked at the bottom of the figure.

we know the deflection angle α(θ), the lens equation yields a unique source position for a

given image position. On the other hand, finding an image position for a given source position

requires inverting the lens equation. The number of solutions and, thus, the number of images

depends on the source position β as well as on the functional form of α(θ).

Several important properties of the images can be found by computing the Jacobian, the

determinant of the lens-equation Jacobian matrix:

det J(θ) =

∣∣∣∣∂ β∂ θ
∣∣∣∣ (2.2)

For an image located at θ = θ0, the sign of det J(θ0) yields the image parity, which is positive
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for regular and negative for mirror images of the source. The inverse of its absolute value,

|det J(θ0)|−1, yields the point-source magnification at θ0. Since the magnification of a point

source is defined as the ratio of infinitesimal solid angles subtended by the image and by the

source, it is also equal to the amplification of flux from the source, i.e., the brightening of the

image. The terms “point-source amplification” and “point-source magnification” both describe

the same quantity; hence, they are interchangeable. If a source at point β has n images at

positions θ1,θ2, . . .θn, its total brightening due to the lens is given by the total point-source

amplification, defined as

A0(β) =
n∑

i=1

|det J(θi)|−1 . (2.3)

The zero-Jacobian contour plays an important role in gravitational lensing. The set of all

points θ in the lens plane of a particular gravitational lens that satisfy the condition

det J(θ) = 0 (2.4)

forms the critical curve of the lens. The critical curve generally sets the boundary in the

lens plane between regions with positive and negative image parities (for a rare exception see

Appendix B of Karamazov et al. 2021, included here in Appendix E). By its definition, the

point-source magnification of any point-like image lying on the critical curve is infinite. Using

the lens equation shown in Equation (2.1) to map the critical curve back to the source plane

yields the caustic, another characteristic curve of the lens.

From the perspective of the source plane, points along the caustic may have multiple images

forming curves in the lens plane. Those images along which the magnification is divergent form

the critical curve of the lens. Since at least one of the images of points β on the caustic lies

on the critical curve, the total point-source amplification A0(β) given by Equation (2.3) is

divergent along the caustic of the lens. The divergence is accompanied by a change in the

number of images across the caustic (e.g., Schneider et al. 1992). A point on its inner side

typically has an additional pair of images in comparison with a point on the outer side of the

caustic. The additional pair of images appears or disappears at a point along the critical curve,

and thus it causes the divergence of the amplification.

While critical curves appear as zero-level contours in lens-plane maps of the Jacobian (e.g.,

in the left panel of Figure 2 in Appendix E), caustics appear as “infinite-level” contours in
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amplification maps, which are source-plane maps of the total point-source amplification A0(β)

(e.g., in the right panel of Figure 2 in Appendix E). The amplification divergence along the

caustic, which is clearly unphysical, arises from one broken and one unphysical assumption.

The first is the assumption of geometric optics, as discussed in Section 2.1, and the second is

the point-source assumption.

Any astrophysically relevant source is extended rather than point-like, subtending a possibly

very small but nevertheless non-zero solid angle. We mark the position of the source center

βc and the position of a source point relative to the source center β ′. The total amplification

of such an extended source can be computed by convolution of the point-source amplification

A0(β) with the surface brightness (or intensity) distribution I(β ′) of the source, normalized

by the flux in absence of the lens:

A(βc) =

∫
ΣS
A0(βc + β ′) I(β ′) d2β ′∫

ΣS
I(β ′) d2β ′ =

∫
ΣI
I(β[θ]− βc) d

2θ∫
ΣS
I(β ′) d2β ′ . (2.5)

The integrals in the first expression and in the denominator of the second expression are com-

puted over the full solid angle ΣS subtended by the source, and the integral in the numerator

of the second expression is computed over the full solid angle ΣI subtended by all images of the

source (Pejcha & Heyrovský 2009). The second expression, which is obtained by transforming

the integration to the lens plane and utilizing Equation (2.3), shows that the divergence of

A0(β) is integrable, yielding finite amplification even for sources crossing the caustic. In many

cases, numerical evaluation of the integral in the numerator of the first expression is computa-

tionally demanding. In such situations, the amplification may be obtained by methods based

on the second expression, such as inverse ray shooting (Kayser et al. 1986) or image-plane

integration (Bennett & Rhie 1996; Vermaak 2000; Pejcha & Heyrovský 2009).

Equation (2.5) indicates that for an extended source the amplification is generally not equal

to the magnification, i.e., the ratio of solid angles subtended by the images and by the source.

The two are equal only for uniform sources with a constant surface brightness distribution,

or in cases when the point-source amplification varies little across the surface of the source,

so that A(βc) ≈ A0(βc). Equation (2.5) also indicates that even though gravitational light

deflection is independent of wavelength, the amplification of an extended source may depend

on wavelength through the combination of two factors. First, the surface brightness distribution



2: Gravitational Lensing Concepts 11

I(β ′) of astrophysical sources is typically wavelength dependent. Second, the emitting area of

the source ΣS may be wavelength dependent.

2.3 Lens Potential Derivatives and Image Geometry

For mass distributions relevant to astrophysical lenses the deflection angle can be expressed

as

α(θ) =
Ds

Dls
∇θ ψ(θ) , (2.6)

where the image-plane scalar function ψ(θ) is the lens potential (also referred to as lensing or

deflection potential in the literature). This expression for the deflection angle can be used in

Equation (2.1) to yield the following form of the lens equation:

β = θ −∇θ ψ(θ) . (2.7)

Its Jacobian matrix can be expressed in the form

J(θ) =
∂ β

∂ θ
=

1− κ− γ cos 2φ −γ sin 2φ

−γ sin 2φ 1− κ+ γ cos 2φ

 , (2.8)

where κ, γ, φ are combinations of the second partial derivatives of the lens potential. Specifically,

the convergence κ is defined as

κ(θ) =
1

2
(ψ,11 +ψ,22 ) , (2.9)

the shear γ is defined as

γ(θ) =

√
1

4
(ψ,11 −ψ,22 )2 + (ψ,12 )

2 , (2.10)

and the phase φ is defined in terms of its trigonometric functions as

[ cos 2φ(θ), sin 2φ(θ) ] = γ−1

[
1

2
(ψ,11 −ψ,22 ) , ψ,12

]
. (2.11)

In terms of these quantities, the Jacobian introduced in Equation (2.2) has the simple form

det J(θ) = [ 1− κ(θ) ]2 − γ2(θ) . (2.12)

Equation (2.4) then yields an implicit expression for the critical curve,

γ(θ) = | 1− κ(θ) | . (2.13)
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The convergence–shear formalism is particularly useful for studying the geometry of images

of small sources. We denote the source-center position βc and concentrate on one of its images

appearing at θc. In order to explore the imaging properties of the lens equation, we expand it

to linear order in the vicinity of θc. For source points β near βc we get

β − βc ≈ J(θc) (θ − θc) (2.14)

for image points θ near θc.

Inverting Equation (2.14), we get

θ − θc ≈ A(θc) (β − βc) , (2.15)

where the inverse matrix of J(θ) has the form

A(θ) =
1

[ 1− κ ]2 − γ2

1− κ+ γ cos 2φ γ sin 2φ

γ sin 2φ 1− κ− γ cos 2φ

 . (2.16)

When expressed at the position of the source-center image θc in Equation (2.15), this constant

symmetric matrix causes an expansion or contraction in two perpendicular directions. For a

small circular source this generates a small elliptic image. However, note that the factor in the

denominator of Equation (2.16) indicates that images appearing close to the critical curve may

be substantially magnified. Accounting for larger displacements from θc in the image plane

then requires including higher-order corrections to the linear expansion in Equation (2.14),

which cause distortions of the elliptic shape.

For a more detailed analysis of the image geometry as a function of convergence, shear,

and phase, see Section 2.3 and Appendix A of Karamazov & Heyrovský (2021), included here

in Appendix F. Image distortions play a key role in the regime of weak lensing, discussed in

Chapter 6.



Chapter 3

Lensing By a Point Mass

3.1 Lens Equation and the Einstein Radius

In the simplest model of a gravitational lens, the gravitational field of a massive astrophysical

object is described by that of a point mass. In terms of general relativity, the metric of

the curved space-time of the lensing object is approximated by the Schwarzschild metric and

photons propagate along its null geodesics. The angle between the incoming and outgoing

asymptotes to the geodesics can be described by the light-deflection formula

α(θ) =
4GM

c2Dl

θ

|θ|2
, (3.1)

where M is the mass of the lensing object, G is the gravitational constant, and c is the speed of

light. The orientation of the angle reflects the circular symmetry of the simple configuration,

in which the entire photon geodesic lies in the plane defined by the observer, source, and the

point mass. As shown in Figure 3.1, in such a case the source and image positions, β and θ,

are parallel.

The formula in Equation (3.1) represents the first post-Newtonian approximation of the

deflection angle. This approximation fails for photons passing within a few Schwarzschild radii

of compact objects such as neutron stars or black holes. Such photons may reach the observer

and form higher-order relativistic images of background sources. Nevertheless, in the context

of gravitational lensing their contribution to the observed flux is negligible, due to their near-

zero magnification (Virbhadra & Ellis 2000). Hence, Equation (3.1) is a good approximation

even for the dominant images formed by neutron-star and black-hole gravitational lenses. The

13
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Figure 3.1: Gravitational lensing by a point-mass lens. Light from a source at angular position β

(marked in the source plane) is lensed by a point mass at L, which forms two images perceived by the

observer at I+ and I−. Their angular positions are marked in the lens plane: θ+ lies outside and θ−

inside the Einstein circle (blue). Remaining notation as in Figure 2.1.

results based on the approximation in this chapter are valid for them as well.

Substituting Equation (3.1) for the deflection angle in Equation (2.1) yields the lens equation

for the point-mass lens,

β =

(
1−

θ2E
θ2

)
θ . (3.2)

All the constants and distances appearing in the original equations are combined in a single

quantity, the (angular) Einstein radius,

θE =

√
4GM

c2
Dls

DsDl
. (3.3)

The Einstein radius is directly proportional to the square root of the lens mass, inversely

proportional to the square root of the lens distance, and directly proportional to the square

root of the fractional lens-source distance along the line of sight to the source. Note that for

asymptotically distant sources for which Ds ≫ Dl, the Einstein radius is determined purely by

the mass of the lens and its distance from the observer, independent of the source.
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3.2 Point-source Images and Their Properties

Equation (3.2) is simple enough to be inverted analytically, yielding the image position as a

function of source position. For a point source at β ̸= 0 the lens forms two images at positions

θ± =

1

2
±

√
1

4
+
θ2E
β2

 β , (3.4)

both lying in the plane defined by the observer, source, and the point mass (see Figure 3.1).

For β = 0 the source lies directly behind the lens. In this case there is no preferred plane for

the light ray and Equation (3.2) shows that the image of the source,

θ2 = θ2E , (3.5)

is an Einstein circle around the lens.

Before describing the properties of the two images, we compute the lens-equation Jacobian.

We use Equation (3.2) and the definition in Equation (2.2) to obtain

det J(θ) = 1− (θE/θ)
4 . (3.6)

The image at θ+ lies on the same side of the lens as the source (i.e., β · θ+ > 0); it appears

outside the Einstein radius (θ+ > θE) at a larger angular separation from the lens than the

source (θ+ > β); it has positive parity (det J(θ+) > 0) and it is magnified (1/|det J(θ+)| > 1).

The image at θ− lies on the opposite side of the lens than the source (i.e., β · θ− < 0);

it appears inside the Einstein radius (θ− < θE); it has negative parity (det J(θ−) < 0). It is

always the less magnified of the two images, 1/|det J(θ−)| < 1/|det J(θ+)|. Thus, in terms of

flux it is always the dimmer of the two. The remaining properties of this image depend on

the source position β. For β > θE/
√

2 ≈ 0.707 θE it lies at a smaller angular separation from

the lens than the source (θ− < β), while for β < θE/
√

2 it lies at a larger angular separation

from the lens than the source (θ− > β). For β > θE(21/4 − 2−1/4) ≈ 0.348 θE it is demagnified

(1/|det J(θ−)| < 1), while for β < θE(21/4 − 2−1/4) it is magnified (1/|det J(θ−)| > 1).

The positions of the images for different source positions β are also illustrated by the bright

yellow dots in the lens-plane plots in Figure 3.2. Here the source (pale yellow dot) is placed

for simplicity along the positive sense of the vertical axis, with the θ+ image lying outside and

above the blue Einstein circle, and the θ− image lying below the lens inside the Einstein circle.
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Figure 3.2: Extended-source and point-source images formed by a point-mass lens, plotted in the

lens plane. The location of the uniformly bright circular source with radius βr = 0.25 θE is indicated

by the pale red disk; the point source is illustrated by its center (pale yellow dot). In the presence of

the lens (located at the center of the blue Einstein circle), instead of the source one sees its images:

bright red for the circular source, bright yellow for its center. Source-center positions βc are marked

at the bottom of the panels. Note the Einstein-ring image at the right, which forms as the two images

merge when the lens caustic lies on the source (for βc < βr).

The described properties also hint at the behavior of the images in the limiting cases, for

sources at large or small angular separations β from the lens, in comparison with its Einstein

radius. For β ≫ θE the positive-parity image converges to the source position, θ+ → β, and its

magnification approaches unity, 1/|det J(θ+)| → 1. Hence, the positive-parity image merges

with the true position and appearance of the source, as it would be seen in the absence of the

lens. On the other hand, the negative-parity image shrinks, 1/|det J(θ−)| → 0, and its position

converges to the lens position, θ− → 0. The negative-parity image thus “disappears” at the

lens position.

For β ≪ θE, the positive-parity image approaches the Einstein radius from outside (θ+ →

θE β/β) and the negative-parity image approaches the Einstein radius from inside on the op-

posite side of the lens (θ− → −θE β/β), as the magnifications of both diverge. Therefore, for

a point-like source the images change discontinuously, from two opposite points for arbitrarily

small but non-zero β, to the circle connecting them when the source is perfectly aligned behind

the lens. This can be seen in the last two panels of Figure 3.2.

Setting the Jacobian from Equation (3.6) equal to zero, we get

|θ| = θE . (3.7)



3: Point-mass Lensing 17

Hence, the critical curve of the point-mass lens is a circle with the Einstein radius, marked in

blue in Figure 3.1 and Figure 3.2. The critical curve is identical with the image of a point source

directly behind the lens in Equation (3.5). This implies that the caustic of the point-mass lens

is the single point β = 0, which can be confirmed by substituting θ from Equation (3.7) in the

lens Equation (3.2).

In order to compute the point-source amplification for the point-mass lens, we use the

Jacobian from Equation (3.6) in Equation (2.3),

A0 = |det J(θ+)|−1 + |det J(θ−)|−1 =
[
1− (θE/θ+)

4
]−1

+
[
(θE/θ−)

4 − 1
]−1

. (3.8)

Substituting for θ+ and θ− from Equation (3.4) yields

A0(β) =
β2 + 2 θ2E

β
√
β2 + 4 θ2E

, (3.9)

a simple expression showing that the point-source amplification depends only on β/θE, the

source position in units of the Einstein radius.

As shown by the black curve in Figure 3.3, with βc = β, the amplification given by Equa-

tion (3.9) is a monotonically decreasing function of β/θE. For a source positioned well outside

the Einstein radius, β ≫ θE,

A0(β) ≈ 1 + 2

(
β

θE

)−4

, (3.10)

the point-source amplification decreases to unity, corresponding to an unamplified source flux.

For a source positioned well inside the Einstein radius, β ≪ θE,

A0(β) ≈
θE
β

+
3β

8 θE
, (3.11)

the point-source amplification reveals the divergence at the origin, i.e., for a point source

perfectly aligned behind the point lens (β = 0).

3.3 Images of an Extended Source

As mentioned in Section 2.2, the non-physical divergence of the amplificationA0 is associated

with the non-physical concept of a point source. For an extended source, each of its points has

two images, as described above. The images of the points on the boundary of the source form

the boundaries of the images, as illustrated in Figure 3.2 for a circular source with radius
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Figure 3.3: Amplification of flux from a source centered at position βc by a point-mass lens. Black

curve: point-source amplification A0(βc) given by Equation (3.9). Blue, green, and red curves: ampli-

fication A(βc) given by Equation (2.5) of a uniformly bright circular source with different radii βr, as

marked in the figure. To the left of the vertical dashed line of a particular color the lens caustic lies

on the source of the corresponding radius.

βr = 0.25 θE at different positions βc. The position of the source and its center is indicated by

the pale red disk and a pale yellow dot, respectively. The positions of the images of the source

and its center are marked by the bright red patches with bright yellow dots (or a bright yellow

circle in the last panel). If the point-like caustic of the lens lies outside the boundary of the

source (as in the first five panels of Figure 3.2), there are two separate images. If the caustic

lies on the source (as in the last panel of Figure 3.2), the two images merge and form a ring-like

image along the Einstein circle. In the sixth panel, the caustic lies exactly on the bottom edge

of the source disk. This point at the edge is imaged onto the Einstein circle, and the outer

(top) and inner (bottom) images of the source touch exactly at the two symmetric points lying

at the intersection of the circle and the horizontal axis.

For a source with a surface-brightness distribution I(β) the amplification is obtained from

Equation (2.5), using the expression for the point-source amplification A0 from Equation (3.9).



3: Point-mass Lensing 19

As described in Section 2.2, integration over the surface of the source eliminates the diver-

gence and yields a finite value of the amplification. For illustration, Figure 3.3 includes the

amplification as a function of source-center position βc for uniformly bright circular sources of

three different radii βr ∈ {0.25, 0.5, 1} θE. An analytic expression for the amplification of such a

source was derived by Witt & Mao (1994). As seen from the figure, smaller sources may achieve

larger peak amplification, while for larger sources with βr > θE the peak amplification drops

to 1 and the influence of the lens becomes negligible. Note also that for sources positioned off

the caustic, to the right of the corresponding vertical dashed lines in the figure (βc > βr), the

amplification rapidly converges to the point-source amplification. Since the source is uniformly

bright, the blue curve for βr = 0.25 θE shows the total magnification of the bright red images

in Figure 3.2. For example, the Einstein ring in the last panel for βc = 0 subtends a solid angle

(has an area) about eight times larger than the source.

3.4 Point-mass-lens Convergence, Shear, and Phase

The lens potential for the point-mass lens can be obtained by combining the deflection angle

in Equation (3.1) with the expression in Equation (2.6), yielding

ψ(θ) = θ2E ln |θ | . (3.12)

The potential can be used to compute the point-mass-lens convergence from Equation (2.9),

κ(θ) = π θ2E δ(θ) , (3.13)

which is zero anywhere except at the position of the lens. The distortions of the images are

thus given purely by the point-mass-lens shear. From Equation (2.10) we obtain

γ(θ) =

(
θE
θ

)2

, (3.14)

which is divergent at the lens position, equal to unity at the Einstein radius, and drops to zero

for θ ≫ θE.

The orientation of the image distortion is given by the phase φ, for which Equation (2.11)

yields

[ cos 2φ(θ), sin 2φ(θ) ] =

[
θ22 − θ21
θ2

,− 2 θ1 θ2
θ2

]
. (3.15)
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The interpretation of the phase can be found by introducing polar coordinates in the image

plane, [θ1, θ2] = θ [cosϕ, sinϕ]. Equation (3.15) then shows that φ(θ) = φ(ϕ) = ϕ+ π/2 + k π,

where k is an integer included to obtain the phase in the preferred π−wide definition interval.

This result shows that the images formed by a point-mass lens are always oriented tangentially,

perpendicular to the position angle ϕ.



Chapter 4

Microlensing By Stars and Planets in Our Galaxy

4.1 Microlensing by Single Stars

In spite of its simplicity, the point-mass lens described in detail in Chapter 3 is not a toy

model. It provides an excellent description of gravitational lensing by compact massive astro-

physical objects. The mass and size of such objects are constrained by the compactness crite-

rion, which requires their angular size to be substantially smaller than their angular Einstein

radius for background sources of interest. Such objects do not even require exact spherical

symmetry, since their gravitational field is dominated at larger distances by the point-mass

monopole term.

Distant stars and planets in our Galaxy fit the criterion perfectly. Hence, they may act

as point-mass lenses for more distant background stars as sources. However, their Einstein

radii are typically θE ≲ 10−3arcsec, too small for the images to be resolved observationally, as

pointed out already by Einstein (1936). The only chance of detecting such lensing would be

by measuring the total flux amplification of the source, but this would require knowing the

intrinsic flux of the source. In addition, as argued by Einstein (1936), the chance of having a

background star within an Einstein radius of the line of sight to a foreground star is very low.

Nevertheless, for stars in the Galaxy their relative proper motions are high enough for the

source to cross the Einstein radius of the lens on a timescale of days to months Liebes (1964);

Refsdal (1964); Paczyński (1986). Measuring the light curve of the source would then solve the

first problem, by monitoring the gradual increase of its flux and decrease back to its intrinsic

21
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Figure 4.1: Microlensing light curves for a point source lensed by a point-mass lens. Point-source

amplification A0 is plotted as a function of time for five values of the impact parameter β0 given in

the inset at right. The source trajectories in the rest frame of the lens (marked by the black point and

the blue Einstein circle) are indicated by the arrows in the inset at left. The peak time is denoted by

t0; the Einstein-radius crossing time by tE.

value, as the lens passes in the foreground. This scenario describes the effect known as Galactic

gravitational microlensing. The term “microlensing” is generally used for lensing by stars and

stellar or planetary systems in our own or any other galaxy. Even though the image separations

are too small for them to be resolved, microlensing is manifested and can be detected by the

changing amplification of background sources due to the relative source–lens proper motion.

The relative source–lens trajectory in the course of a typical microlensing event can be

approximated by a straight-line segment. The angular source-lens separation as a function of

time can then be expressed as

β(t) =

√
β20 +

(
t− t0
tE

)2

θ2E , (4.1)

where β0 is the impact parameter, t0 is the closest-approach time, and tE is the Einstein-

radius crossing time. The light curve for a typical microlensing event is then given by A0[β(t)],

substituting from Equation (4.1) in the point-source amplification formula from Equation (3.9).
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Figure 4.1 includes examples of microlensing light curves for five values of the impact pa-

rameter β0. The peak amplifications, A0(β0), can also be read off the black curve in Figure 3.3.

If the source just grazes the Einstein circle of the lens (dark green curve in Figure 4.1), the peak

amplification is very well detectable but fairly low, A0(θE) = 3/
√

5 ≈ 1.34. For lower impact

parameters the source may achieve significant brightening at the peak of the event, A0 ≳ 8 for

β0 < 0.125 θE. The effect is thus strong enough to be detectable even by small telescopes under

favorable conditions.

The feasibility of detecting microlensing thus depends on the frequency of configurations

providing the required lens–source alignment. For a source star in the Magellanic Clouds or in

the Galactic Bulge the probability that it lies within an Einstein radius of a foreground star

was estimated by Paczyński (1986, 1991) to be on the order of 10−6. In other words, one in a

million such stars should be lensed at any time. Monitoring millions of such stars over months

or years should yield many detections of such microlensing events. The rich star fields in the

mentioned regions are perfect targets for automated monitoring surveys, which may detect

numerous microlensing events in real time.

The initial microlensing surveys such as MACHO (Alcock et al. 1997), OGLE (Udalski et al.

1997), EROS (Renault et al. 1997) or DUO (Alard & Guibert 1997) started in the early 1990’s

with the goal to detect microlensing by planetary- or stellar-mass compact dark-matter objects,

so-called MACHOs (Massive Astrophysical Compact Halo Objects). However, analyses of the

detected event statistics ruled out the hypothesis that the majority of dark matter occurs in

the form of MACHOs (Tisserand et al. 2007). The observed microlensing events are compatible

with the lenses being stars from Galactic stellar populations (Popowski et al. 2005; Sumi et al.

2006). The detection rate, which started at tens of events per year, has gradually increased

up to thousands of events per year with the currently operating surveys, which include OGLE,

MOA (Abe et al. 1997), and KMTNet (Kim et al. 2016).

Starting soon after the first surveys, microlensing follow-up projects such as PLANET (Al-

brow et al. 1998), µFUN (Gould et al. 2010), RoboNet (Tsapras et al. 2009), MiNDSTEp

(Dominik et al. 2010), or ROME/REA (Tsapras et al. 2019) have been set up to measure the

light curves of events detected by the surveys with better time coverage and photometry. The
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Figure 4.2: Microlensing light curves for an extended limb-darkened source lensed by a point-mass

lens. Extended-source amplification A is plotted in the bottom panel as a function of time for a circular

source with radius βr = 0.1 θE passing behind the lens with a zero impact parameter. The different

colors of the light curves correspond to different limb-darkening profiles I(r) of the source shown in

the top panel. The peak time is denoted by t0; the source-radius crossing time by t∗. The dotted

vertical lines are aligned to mark the source edges (top) and the times of their crossing (bottom).

goal of these projects has been the detection anomalous events with deviations from the simple

point-source point-lens light curves seen in Figure 4.1. Such anomalies may arise from parallax

effects due to deviations of relative source–lens–observer motions from uniform rectilinear mo-

tion, from extended-source effects when the lens caustic resolves the disk of the source star, or

from the lens or source star being a component of a stellar system such as a binary star. How-

ever, the primary sought anomalies are those arising from the additional gravitational lensing

effect of planets around the lens star, described here in Section 4.2.

For events with an impact parameter low enough to be comparable or lower than the angular

radius of the source star β0 ≲ βr, extended-source effects become significant, limiting the peak
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amplification. In terms of Einstein radii, source star radii in microlensing events are usually in

the range 10−4–10−2 θE, though in exceptional cases they may be larger than 0.1 θE. Instead

of point sources, such stars should be treated as circular sources (see Figure 3.2). However,

stellar surface brightness distribution is not uniform, it follows a limb-darkened radial profile

I(r), where dimensionless r runs from 0 at the disk center to 1 at its limb. The limb darkening

depends sensitively on wavelength and on the stellar-atmosphere parameters of the source

star. The main implication for microlensing is that the light-curve shape at the peak loses its

achromaticity and depends on the photometric band used for observation. On the one hand,

this is a complication for the event analysis. On the other hand, such events can be used for

the unique measurement of the limb darkening of their source stars (Heyrovský 2003).

We illustrate the relation between the limb-darkening profile I(r) and the shape of the light

curve in Figure 4.2 on the example of a microlensing event with a source-star radius βr = 0.1 θE

and a zero impact parameter. The light curves in the bottom panel are plotted with time

marked in source-radius crossing times, t∗ = tE βr/θE, and the position of the source center

βc(t) computed from Equation (4.1). The limb-darkening profiles, normalized in the top panel

to unit flux, span the range of shapes obtained by a principal component analysis of stellar

model-atmosphere profiles (Heyrovský 2003, 2008), with the flattest plotted in red and the most

peaked profile plotted in blue. The correspondingly colored light curves in the bottom panel,

which are computed using the respective I(r) profiles in Equation (2.5), can be seen to trace

the shape of the underlying limb-darkening profiles. As the lens caustic exits the source the

differences rapidly vanish. At a separation of two source radii (edges of the bottom plot) the

light curves regain their achromaticity and become indistinguishable.

This sensitivity of the microlensing light curves has been used in a number of events to

measure the source-star limb darkening (e.g., Cassan et al. 2006; Fouqué et al. 2010; Choi et

al. 2012). These caustic-crossing events can also reveal the possible presence of star spots on

surface the source star (Heyrovský & Sasselov 2000). Spectroscopic monitoring during the

crossing can reveal details of the structure of the star’s atmosphere (Heyrovský et al. 2000).
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4.2 Microlensing by Binary Stars and by Stars with a Planet

A large fraction of stars in the Galaxy are components of multiple stellar systems. In the

mass range 0.1–0.5M⊙ at least 26%, and in the mass range 0.7–1.3M⊙ at least 44% of stars

have at least one stellar companion (Duchêne & Kraus 2013). Similarly, based on the statistics

of exoplanet detections, a majority of stars are expected to host at least one planet (Cassan

et al. 2012; Gaudi 2021). Microlensing by such stars often cannot be described by the simple

light-deflection formula in Equation (3.1). The presence of other bodies near the lens star can

be expected to influence the observed light curves.

The simplest model that can describe lensing by a binary star or a star with a planet is the

two-point-mass lens, explored in detail first by Schneider & Weiss (1986) for the equal-mass

case and by Erdl & Schneider (1993) for the case of a general mass ratio. In the post-Newtonian

approximation light deflection is additive, since it arises from the additive gravitational poten-

tial. For two point masses with projected lens-plane positions θA, θB and masses MA, MB the

total deflection angle can be written as

α(θ) =
4GM

c2Dl

[
µA

θ − θA
|θ − θA|2

+ µB

θ − θB
|θ − θB|2

]
, (4.2)

where M = MA + MB is the total mass of the lens and {µA, µB} = {MA/M,MB/M} are the

fractional masses of the two components satisfying the relation µA + µB = 1.

Using the deflection angle from Equation (4.2) in Equation (2.1) yields the lens equation

for the two-point-mass lens:

β = θ − θ2E

[
µA

θ − θA
|θ − θA|2

+ µB

θ − θB
|θ − θB|2

]
, (4.3)

where the Einstein radius θE corresponds to the total mass of the lens M . In the notation

introduced by Witt (1990) the vectorial quantities appearing in the equation can be replaced

by complex numbers. The equation can then be converted to a fifth degree polynomial equation,

which can be seen in Equation (6) in Appendix A with n = 2. For general positions and masses

of the lens components, the lens equation thus cannot be inverted analytically and the image

positions have to be computed numerically.

In principle, not all roots of the complex equation solve the lens equation, since the poly-

nomial equation is not fully equivalent with Equation (4.3). The criterion for the number of
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images is the position of the source β with respect to the lens caustic, which is formed by one

or more closed curves instead of the single point in the case of the point-mass lens. For source

positions lying outside the lens caustic two of the five roots of the complex polynomial equation

are spurious; they do not solve Equation (4.3). Hence, such a source has only three images. For

points in the source plane outside the caustic none of the roots are spurious and such points

have five images.

The Jacobian of Equation (4.3) is

det J(θ) = 1− θ4E

[
µA

|θ − θA|2
+

µB

|θ − θB|2

]2
. (4.4)

To obtain the point-source amplification for the two-point-mass lens, the values of the Jacobian

in the three or five numerically computed images θi have to be used in the general formula in

Equation (2.3). The light-curve structure is substantially more complex than in the point-mass-

lens case. For a general projected trajectory of the source in the source plane, the point-source-

amplification increases as the source approaches the lens. However, closer to the lens the light

curve is determined by the structure of the caustic of the lens, with the amplification sharply

diverging at all points where the source crosses the caustic. Just as in the point-mass-lens case,

close to these caustic crossings the point-source approximation has to be abandoned and the

amplification has to be computed using Equation (2.5) with the source star modeled by a limb-

darkened circular source. As shown by Pejcha & Heyrovský (2009), in the two-point-mass lens

the regions of sensitivity to the non-zero angular size of the source star and its limb darkening

generally extend much further than in the point-mass lens, especially outside the cusps of the

caustic.

By setting the Jacobian from Equation (4.4) equal to zero we obtain the critical curve and,

by mapping the critical-curve points back to the source plane using Equation (4.3), the caustic

of the lens. The scale of these curves is given by the Einstein radius θE, their orientation by

the axis of symmetry connecting the two points, and their location by the position of one of

the points (or, alternatively, their center of mass or centroid). Their shape is given by the

two remaining parameters contained in Equation (4.4): one of the fractional masses and the

separation of the two points s = |θB − θA|/θE, expressed customarily in units of the Einstein

radius. The structure of the critical curve and caustic is thus determined by the combination
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Figure 4.3: Critical curves and caustics for a two-point-mass lens with fractional masses {µA, µB} =

{0.8, 0.2} for five separations s marked in the pairs of panels. Critical curves (blue) are plotted in the

lens plane; caustics (red) are plotted in the source plane (note the different scales). The point-mass

positions are marked by black crosses. Left column: examples of the wide, intermediate, and close

regimes (from top). Right column: configurations at the boundaries between the regimes.

{µA, s}, which defines the parameter space of the lens.

As an example, we present in Figure 4.3 plots of the critical curves (blue) and caustics

(red) for a two-point-mass lens with fractional masses {µA, µB} = {0.8, 0.2} for five values of

the separation s. In all cases the centroid of the lens is placed at the origin, the two lens

components (marked by crosses) are positioned along the horizontal axis (the more massive A

on the left), and the axes in the lens and source planes are marked in Einstein-radius units.

The lens has three different regimes, defined by the topology of the critical curve and geometry

of the caustic, usually named by the separation “wide”, “intermediate” (or “resonant”), and
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“close”. The left column in Figure 4.3 illustrates typical cases for either regime.

In the wide regime (shown in the top pair of panels for s = 2), the critical curve consists

of two loops around each of the components. The caustic has two corresponding loops, each

with four sharp points (cusps), connected by smooth segments (folds). At larger separations

s, the critical curve converges to two Einstein circles with radii
√

0.8 θE and
√

0.2 θE, while the

loops of the caustic shrink to points at the positions of the components. Such a configuration

corresponds to two independent point-mass lenses with masses MA, MB.

In the intermediate regime (shown in the middle pair of panels for s = 1), the critical curve

has one loop around both components and the corresponding single loop of the caustic has six

cusps, with the two cusps along the horizontal axis lying between the components. In the close

regime (shown in the bottom pair of panels for s = 0.7), the critical curve has one loop around

both components and two additional small loops inside the first loop. The caustic has three

loops: a central one with four cusps along the horizontal axis, an a symmetrically offset pair of

small loops with three cusps each. At smaller separations s, the outer loop of the critical curve

converges to an Einstein circle with radius θE and the small inner loops shrink and approach

the origin. The central loop of the caustic shrinks to a point at the origin, while the two off-axis

loops recede asymptotically far from the origin. Such a configuration corresponds to a single

point-mass lens with the total mass M .

The boundary cases between the three regimes are shown in the right column in Figure 4.3.

At s ≈ 1.861 the two loops of the critical curve come into contact at a point on the horizontal

axis between the components. Viewed from larger separations, the two loops merge into one;

viewed from smaller separations, the loops of the components detach from the common loop.

The caustic undergoes a beak-to-beak metamorphosis, in which two facing cusps touch and

disappear (here for smaller separations), reducing the total number of cusps on the caustic by

two. At s ≈ 0.733 the two lobes formed on the critical curve above and below the horizontal

axis between the components pinch off and, for smaller separations, detach as separate loops

inward. The caustic undergoes two simultaneous beak-to-beak metamorphoses, in which the

two three-cusped loops present at smaller separations touch the off-axis cusps of the central

loop, so that four cusps vanish for larger separations.
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Figure 4.4: Lensing regimes in the parameter space of the two-point-mass lens, defined by the

fractional mass µA of one point and the separation s of the points. The wide–intermediate boundary

(green curve) is given by Equation (4.5); the close–intermediate boundary (pink curve) is given by

Equation (4.6). The solid vertical line of symmetry at µA = 0.5 marks the equal-mass case. The

dashed line at µA = 0.8 and the crosses along it mark the parameter combinations of the examples

presented in Figure 4.3.

The same three regimes illustrated in Figure 4.3 for fractional mass µA = 0.8 occur for any

other fractional mass. However, the boundaries between them in the parameter space of the

lens depend on the value of µA. As shown by Erdl & Schneider (1993) and as demonstrated in

Section 3.2 of Appendix B, the boundary between the wide and intermediate regimes occurs at

separation

sw =
[

3
√
µA + 3

√
1− µA

]3/2
, (4.5)

and the boundary between the intermediate and close regimes occurs at separation

sc =
[

3
√
µA + 3

√
1− µA

]−3/4
. (4.6)

Both boundaries are plotted in the parameter space of the two-point-mass lens in Figure 4.4,

with the positions of the five examples from Figure 4.3 marked by crosses along the dotted

µA = 0.8 line. As seen from the figure, the intermediate regime always includes separation
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s = 1 with the components exactly one Einstein radius apart. It is widest for the equal-mass

case, where it reaches from s =
√

1/2 to s = 2, and shrinks from both sides to s = 1 for

lenses in which the fractional mass of one of the components approaches zero. Most of the

horizontal-axis range, for 0.03 ≲ µA ≲ 0.97, corresponds to a binary-star lens (Jaroszyński et

al. 2010), the left-most and right-most regions, µA ≲ 0.01 and µA ≳ 0.99, correspond to a lens

star with a planet.

Although the frequency of lens stars in binaries or multiple systems is expected to be high,

in many configurations their microlensing light curves may be very similar to point-mass-lens

light curves. Such configurations include primarily binaries with projected separations much

lower or much higher than the Einstein radius. Nevertheless, Mao & Paczyński (1991) estimated

that about 10% of microlensing events should strongly display the binary nature of the lens.

The high number of detected binary-lens events is supported by results of the MACHO project

(Alcock et al. 2000) and the OGLE project (Jaroszyński 2002; Jaroszyński et al. 2004, 2006;

Skowron et al. 2007; Jaroszyński et al. 2010). The separations in these events peak around one

Einstein radius and span the interval s ∈ (0.3, 3.5) with an outlier at 7.454, which possibly

involved a binary source rather than a binary lens (Alcock et al. 2000).

The extreme-mass-ratio limit of the two-point-mass lens model describes lensing by a star

with a planet, which has been at the center of attention of the microlensing follow-up projects

as mentioned in Section 4.1. For a planet in the intermediate regime and its nearest vicinity,

its effect on the critical curve and caustic of the lens is the strongest. At larger or smaller

separations the critical curve consists of a large Einstein circle and one or two tiny loops caused

by the planet; all the corresponding loops of the caustic shrink rapidly as the separation moves

away from one Einstein radius. Such planets stand a chance of being detected only if the source

directly crosses one of the small caustic loops. Overall, microlensing is most sensitive to planets

located at projected separations close to the Einstein radius of the host star.

The first planet found by gravitational microlensing was detected in event OGLE 2003-

BLG-235 / MOA 2003-BLG-53 (Bond et al. 2004), with a fractional mass µA ≈ 0.0039 and a

separation s ≈ 1.12. Hubble Space Telescope observations made 1.8 years after the peak of the

event were used to detect light form the planetary-host lens star (Bennett et al. 2006). These
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Figure 4.5: Confirmed planets included in the NASA Exoplanet Archive as of August 24, 2021,

shown in a mass vs. semi-major axis scatter plot. Individual exoplanets are marked by color symbols

corresponding to the method of their detection, listed in the legend together with the numbers of

detections. Only planets with estimates of their mass and semi-major axis are illustrated. Black

bullets marking the solar-system planets are included for orientation.

additional data show the lens consists of an 0.63M⊙ K-dwarf host star with an 2.6MJupiter

planet at a projected physical separation of 4.3 AU.

The third published planet detected by microlensing, found in event OGLE 2005-BLG-390

(Beaulieu et al. 2006), was more exciting due to its extremely low fractional mass µA ≈ 7.6 × 10−5.

Its fairly large separation s ≈ 1.6 indicates that this wide-separation planet was detected be-

cause the source star directly crossed the small four-cusped caustic corresponding to the planet.

In this event the lens consists of an 0.22M⊙ M-dwarf host star with a 5.5MEarth super-Earth

planet at a projected physical separation of 2.6 AU. This event showed the main strengths

of detecting planets by gravitational microlensing: sensitivity to low-mass planets due to the

https://exoplanetarchive.ipac.caltech.edu/
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slow decrease of the Einstein radius with mass (θE ∼
√
M), and sensitivity to planets at AU-

scale separations from their host stars due to the lens-plane scale of the Einstein radius of a

typical lens star toward the Galactic Bulge. The combination of these two strengths means

that gravitational microlensing is ideally suited for detecting planets analogous to solar-system

planets.

In Figure 4.5 we present an overview of the confirmed exoplanets plotted by their mass

and semi-major axis, using data downloaded from the NASA Exoplanet Archive1 on August

24, 2021. As of this date, a total of 4472 exoplanets had been detected by eleven different

methods, 112 of them by microlensing. The detection methods are indicated by the color

symbols; they are listed in the figure legend together with the numbers of detected planets. Of

the total number, only the 4305 planets with provided estimates of mass and semi-major axis

are included in the plot.

The different techniques are sensitive to different types of planets: transit surveys are pri-

marily sensitive to planets in close-in orbits; radial velocity surveys primarily to massive planets

and lower-mass planets in close-in orbits; imaging detections are sensitive to large (i.e., gen-

erally massive) planets in wide orbits. The distribution of the 111 blue-star symbols shows

that microlensing surveys have led to the discovery of planets with masses as low as 1.4MEarth

orbiting their host stars at distances from 0.2 to 20 AU. The main weaknesses of exoplanet

discovery by microlensing are the one-time nature of the detection and the inability to study

the atmosphere of the planet, due to the deflected light passing too far from the planet.

Nevertheless, by the growing statistics of discovered planets the technique will help expand

our understanding of exoplanets in parameter-space regions that are difficult to reach by other

methods. Of particular importance is the planned microlensing-based Galactic Exoplanet Sur-

vey (Penny et al. 2019), one of the core missions of the upcoming (Nancy Grace) Roman Space

Telescope (formerly WFIRST, Spergel et al. 2015). This space-based survey is expected to

detect ∼ 1400 bound exoplanets, with ∼ 200 of them having masses ≲ 3MEarth. The detec-

tions may include not only exo-Earths, but also exo-Venuses, exo-Marses, and possibly even

∼ 0.02MEarth Ganymede-mass exoplanets (Penny et al. 2019). In addition, the survey will

1https://exoplanetarchive.ipac.caltech.edu/

https://exoplanetarchive.ipac.caltech.edu/
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be sensitive to free-floating planetary-mass objects and it is expected to place substantially

improved upper limits on their population (Johnson et al. 2020).

4.3 Microlensing by Three-body Lenses

The microlensing-detected planets illustrated in Figure 4.5 include also several planets found

as components of three-body lenses. The simplest example of such lens systems are stars hosting

two planets. The first detected triple-lens microlensing event, OGLE-2006-BLG-109 (Gaudi et

al. 2008; Bennett et al. 2010), involved a 0.5M⊙ star with a 0.73MJupiter planet at 2.3 AU and

a 0.27MJupiter planet at 4.5 AU, similar to a scaled-down version of the Sun–Jupiter–Saturn

system. Three more events with the lens formed by a star with two planets have been included

in the NASA Exoplanet Archive since then: OGLE-2012-BLG-0026 (Han et al. 2013; Beaulieu

et al. 2016), OGLE-2014-BLG-1722 (Suzuki et al. 2018), and OGLE-2018-BLG-1011 (Han et

al. 2019).

The detected triple-lens events also include seven cases, in which the lens is formed by a

binary star with a planet. In two of these events the planet orbits one of the binary components:

OGLE-2008-BLG-092 (Poleski et al. 2014) and OGLE-2013-BLG-0341 (Gould et al. 2014).

One event involves a circum-binary planet: OGLE-2007-BLG-349 (Bennett et al. 2016). In

the remaining four events the projected configuration does not clearly indicate whether the

planet orbits the binary or one of its components: OGLE-2016-BLG-0613 (Han et al. 2017),

OGLE-2018-BLG-1700 (Han et al. 2020), OGLE-2006-BLG-284 (Bennett et al. 2020), and

KMT-2019-BLG-1715 (Han et al. 2021).

In addition to stars with two planets and binary stars with a planet, possible three-body

lenses include two other types of systems as yet undetected by microlensing: triple stars, and

stars with a planet with a moon. The discovery of the latter would be particularly interesting,

since no moon orbiting an exoplanet has been convincingly detected yet by any method. For

triple-star systems to be detectable by microlensing, their projected positions would have to be

not more than a few Einstein radii apart. Close-in triple systems with components a few AU

apart would likely have serious problems with stability. A more likely scenario could involve

a binary star with a distant companion fortuitously located close to the line of sight, so that
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its projected position would lie within a few Einstein radii of the binary. Such configurations

might occur, but their probability would be suppressed by the required geometric alignment.

Microlensing events involving a star+planet+moon lens (Han & Han 2002) should be ge-

ometrically more probable than those involving triple-star lenses. Nevertheless, in most cases

any feature due to the moon would be weak and highly localized on the light curve (Han 2008),

so that its detection would require excellent photometry and an excellent sampling rate (ca-

dence) of observations. As shown by Liebig & Wambsganss (2010), detection would be more

likely for dwarf source stars which cause less smearing of the features by the extended-source

effect. The upcoming Galactic Exoplanet Survey by the Roman Space Telescope (Penny et al.

2019) might provide the best chance for exo-moon detection by microlensing.

For describing such microlensing events, all of the mentioned three-body systems can be

modeled by the three-point-mass lens (or triple lens for short). Computing even point-source

light curves for the triple lens is demanding, since it may produce 4, 6, 8, or 10 images depending

on the position of the source with respect to the caustic (Rhie 2003; Khavinson & Neumann

2006). The analysis and modeling of these events is hindered by the lack of insight into the

general structure of critical curves and caustics of the lens. In the case of two-point-mass lenses,

the analysis of events is greatly simplified by the understanding of the different regimes of the

lens (shown in Figure 4.3), and by the knowledge of the boundaries separating these regimes

in the parameter space of the lens (shown in Figure 4.4). There is no equivalent of Figure 4.3

and Figure 4.4 for the triple lens. A full overview of the different regimes of the general triple

lens has not been published yet, not to mention their parameter-space boundaries. The main

goal of the first three original papers presented in the appendix part of this thesis was to tackle

this outstanding problem.

The general configuration of a triple lens is described by the projected positions of the three

points in the lens plane and by their three masses, nine parameters in all. The total mass defines

the Einstein radius, which can be used as a unit in the lens plane, leaving two of the fractional

masses as free parameters. The geometry of the critical curve and caustic is independent of the

location of the origin of the lens plane and of the orientation of its coordinate axes. By setting

the origin (typically at the centroid, at the center of mass, or at one of the points) and by setting
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the orientation (typically with two of the points aligned parallel with the horizontal axis) the

six coordinates of the points are reduced to three free parameters. The parameter space for

exploring the critical curves and caustics of the triple lens is five-dimensional: two parameters

describe the combination of masses, and three parameters describe the spatial configuration of

the points (i.e., the projected triangle spanned by them).

The need to explore a five-dimensional instead of a two-dimensional parameter space is one

of the differences that raise triple-lens investigations above the studies of the simpler two-point-

mass lens. In addition, triple-lens caustics are substantially more complex than those of the

two-point-mass lens. The number of cusps on the caustic may change in swallow-tail or butterfly

metamorphoses without any change occurring on the critical curve. Caustic loops corresponding

to independent critical-curve loops may cross and overlap each other, and individual loops of

the caustic may exhibit self-intersections. Finally, the triple lens does not have unique wide

and close regimes. Certain configurations exhibit atypical caustics in the wide limit, and others

exhibit atypical caustics or critical curves in the close limit (Daněk & Heyrovský 2015b).

4.4 Included Papers on Triple Lenses

In the first included paper (Daněk & Heyrovský 2015a, Appendix A) we develop tools

useful for the exploration of properties of general n−point-mass lenses. First, we show that any

contour of the Jacobian is equal to the critical curve of an appropriately re-scaled configuration

of the lens. Negative contours correspond to critical curves of a lens with the points placed wider

apart; positive contours to critical curves of a lens with the points placed closer together. The

full set of Jacobian contours then illustrates the full range of critical curves of lens configurations

with the same shape, from the close to the wide limit (as illustrated for the µA = 0.8 two-point-

mass lens in Figure 1 of Appendix A). Next, we introduce the cusp curve, which intersects the

Jacobian contours (i.e., re-scaled critical curves) at the positions of critical cusp images. This

permits the study and visualization of the cusp numbers on the loops of the caustic in the

image plane of the lens. Finally, we introduce the morph curve, which intersects the cusp curve

at points corresponding to caustic metamorphoses. These points identify the configurations at

which the cusp number (and thus the caustic geometry) changes. These tools are illustrated
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on the example of a two-point-mass lens with beak-to-beak metamorphoses in Figure 2, and

on the examples of a triple-lens configuration with beak-to-beak and swallow-tail (Figure 3) or

butterfly (Figure 4) metamorphoses.

In the second included paper (Daněk & Heyrovský 2015b, Appendix B) we performed a

detailed analysis of the critical curves and caustics of four two-parameter triple-lens models: a

linear symmetric configuration of two equal masses with a variable third mass at the center, a

linear asymmetric configuration of equal masses with a variable position of the central mass,

an equilateral triangle configuration with two equal masses and a variable third mass, and an

isosceles triangle configuration with equal masses and a variable vertex angle. For each of these

models we derived parameter-space boundaries of the different lens regimes analogous to those

in Figure 4.4 for the two-point-mass lens, including additional boundaries due to changing cusp

numbers. Altogether we identified nine different topologies of the critical curve (defined by the

number and mutual positions of its loops) as listed in Table 1, and 32 different structures of

the caustic (defined by the number of loops and the numbers of cusps on them) as listed in

Table 2. The isosceles model was found to be the richest: the computed boundaries divide

its parameter space into twelve regions by critical-curve topology (corresponding to all nine

topologies), and into 41 regions by caustic structure (corresponding to 28 different structures).

Lens configurations with anomalous wide or close limits are illustrated and explained using

cusp and morph curves in Jacobian contour plots.

In the third included paper (Daněk & Heyrovský 2019, Appendix C) we present a method

for mapping the lens regimes with different critical-curve topologies for a lens with an arbitrary

spatial configuration of three fixed masses. We parameterized the general triangular configu-

ration of such a lens using the perimeter to define the size, and two fractional side lengths to

define the shape. Plotting the latter two in a ternary diagram (shown in Figure 1) and adding

the perimeter as the third parameter perpendicular to the diagram led to our representation

of the parameter space as a ternary prism (Figure 2). For a given shape of the configura-

tion we computed the six perimeter values at which its critical-curve topology changes by the

identifying the contours passing through the six Jacobian saddle points. Plotted for a dense

grid of different shapes, these six vertical points trace six surfaces that define the topology
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boundaries in the three-dimensional parameter space. The result for three equal masses is plot-

ted in Figure 3, and the topologies in the different regions are identified on a sequence of its

horizontal sections shown in Figure 6. The full set consists of the same nine topologies found

in Daněk & Heyrovský 2015b. Their probability of occurrence as a function of the perimeter

of the configuration (in Einstein radius units) is shown in Figure 7 and Table 1. The paper

includes similar analyses for two other combinations of masses: an equal-mass binary with a

planet 104× lighter than the binary; and a hierarchical star-planet-moon combination (masses

in a 1 : 0.01 : 0.0001 ratio). For both of these models we found two previously unknown

topologies involving doubly-nested critical-curve loops (illustrated in Figure 16), bringing the

current total number of identified triple-lens critical-curve topologies to eleven. The schematic

topology line-up is shown in Figure 9 in order of appearance with increasing perimeter in the

planet-in-binary model.



Chapter 5

Lensing By Galaxies

5.1 Galaxies as Gravitational Lenses

While gravitational lensing by individual stars is conceptually the simplest, lensing by galax-

ies and galaxy clusters is more widely known, largely due to its visual appeal. Due to their

large Einstein radii, the multiple images formed by them of background sources typically have

sufficient separations and sizes for their often spectacular configurations to be directly observed

and imaged. Historically, galaxies were the first astrophysical objects for which gravitational

lensing was detected. The discovery of the twin images of quasar Q0957+561 by Walsh et

al. (1979) followed by the discovery of the foreground lens galaxy by Young et al. (1980) and

Stockton (1980) provided the first convincing case of the effect predicted by Einstein (1936)

and Zwicky (1937). Since the first discovery, hundreds of galaxy-scale gravitational lenses have

been found and upcoming large-scale imaging surveys are expected to increase the number by

several orders of magnitude (Metcalf et al. 2019).

Galaxies may contain up to 1012 stars, which precludes modeling their lensing by a system

of point-mass lenses. Moreover, their mass is generally dominated by dark matter in a galactic

halo, and includes also gas and dust. To describe the multiple imaging of background quasars or

galaxies, the galaxy has to be thus modeled by a continuous mass distribution. This corresponds

to the regime of strong lensing, described in Section 5.2.

Nevertheless, even individual stars in the lens galaxy may have an additional effect on the

images of compact sources such as quasars. If the light of a particular image passes directly

39
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through the region populated by stars of the galaxy, the relative motion of the source with

respect to the fine caustic network formed by the stars may lead to a temporal modulation of

the brightness of the image. This effect of quasar microlensing is described in Section 5.3.

5.2 Strong Lensing

In the thin-lens approximation discussed in Section 2.1, the distribution of matter in the

lens galaxy can be represented by its column density, obtained by integrating its density along

the line of sight. The result can be treated as a surface density Σ(θ) as a function of position in

the lens plane. The light-deflection angle can be obtained by linear superposition of deflections

from all points contributing to the surface density. In an analogy to the combination of two

points masses in Equation (4.2), we get

α(θ) =
4GDl

c2

∫
Σ(θ′)

θ − θ′

|θ − θ′|2
d2θ′ , (5.1)

where the integral is performed over the mass distribution of the lens. For a general lens the

light-deflection angle is not obtained from a simple analytic formula; it has to be computed by

numerical integration for any lens-plane point θ of interest.

The surface density is usually expressed in units of the critical surface density

Σcr =
c2

4πG

Ds

DlDls
. (5.2)

This peculiar combination of distances and constants corresponds for example to the surface

density obtained by dividing the mass of an object by the area of the Einstein circle of a

corresponding point mass, Σcr = M/(πD2
l θ

2
E ). As illustrated below, the dimensionless surface

density is the convergence of the lens,

κ(θ) =
Σ(θ)

Σcr
, (5.3)

and the deflection angle can be expressed in its terms as

α(θ) =
Ds

πDls

∫
κ(θ′)

θ − θ′

|θ − θ′|2
d2θ′ . (5.4)

A comparison of this expression with Equation (2.6) shows that the deflection corresponds

to the lens potential

ψ(θ) =
1

π

∫
κ(θ′) ln |θ − θ′|d2θ′ , (5.5)
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which also corresponds to a linear combination of point-mass potentials from Equation (3.12).

The expression in Equation (5.5) shows that the lens potential is the solution of the two-

dimensional Poisson equation

∆
θ
ψ(θ) = 2κ(θ) . (5.6)

This result also demonstrates that the convergence defined by Equation (5.3) satisfies the

definition from Equation (2.9) as well. The lens equation can be written in terms of the lens

potential using Equation (2.7).

For illustration, we present here an example of strong lensing by a galaxy using a cored

pseudo-isothermal elliptical mass distribution (Kassiola & Kovner 1993; Keeton & Kochanek

1998), described by its convergence

κ(θ) =
κ0√

1 + q2θ21 + θ22
, (5.7)

where the θ1 axis is aligned with the major axis of the distribution, q ∈ [0, 1] is the projected

axis ratio, the lens-plane position θ is expressed in units of the softening core scale θs, and κ0

is the convergence at the center of the mass distribution. In terms of the parameters used by

Keeton & Kochanek (1998), θs = q s and κ0 = bI/(2 q s).

The components of the light-deflection angle for this model expressed in units of θs are

α1(θ) =
2Ds κ0

Dls

√
1 − q2

arctan

[
q
√

1 − q2 θ1

1 + q
√

1 + q2θ21 + θ22

]
, (5.8)

α2(θ) =
2Ds κ0

Dls

√
1 − q2

arctanh

[ √
1 − q2 θ2

q +
√

1 + q2θ21 + θ22

]

and the Jacobian is given by

det J(θ) = 1− 2κ0√
1 + q2θ21 + θ22

+
4 q κ20√

1 + q2θ21 + θ22

[(
1 + q

√
1 + q2θ21 + θ22

)2
+ q2(1− q2) θ21

] , (5.9)

as derived by Keeton & Kochanek (1998).

Figure 5.1 shows an example of the two-component critical curve (left panel) and caustic

(right panel) of the lens for parameters κ0 = 10 and q = 0.7. The positions of two circular

sources are indicated in the right panel. Both are centered at the same position, with the

light-orange source being ten times larger than the dark-orange source. The images of the
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Figure 5.1: Strong lensing by a galaxy with an elliptical mass distribution of a small and a large

source. The mass distribution given by Equation (5.7) has central convergence κ0 = 10 and axis ratio

q = 0.7, the lens-plane (left) and source-plane (right) axes are plotted in units of softening core scale

θs. Right panel: caustic (red) and two circular sources centered at (β1, β2) = (2, 1), with radii 0.5

(dark orange) and 5 (light orange). Left panel: critical curve (blue) and images of the two sources

shown in corresponding colors.

sources formed by the lens are shown in the left panel. The smaller source, which lies inside the

inner four-cusped caustic, has five images including a tiny one inside the inner critical curve.

For such a small source not lying directly on the caustic, all images are separated so that the

number of macro-images is the same as the number of images for any part of the source. In the

case of the larger source, which covers two cusps of the inner caustic and crosses its opposite

fold, the situation is markedly different. Parts of the source inside the inner caustic have five

images each, while those lying outside have only three images each. Overall, this source has

two macro-images: a tiny one inside the inner critical curve, and a large ring-like image forming

an equivalent of the point-mass-lens Einstein ring illustrated in the last panel of Figure 3.2.

The two source sizes were selected to illustrate the difference between galaxy-quasar and

galaxy-galaxy lensing. The angular size of the bright emitting region of the quasar is typically

much smaller than the angular size of the caustic components. Lensed quasars may thus form

well separated multiple images and their amplification can often be approximated by the point-
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source amplification. Angular sizes of lensed galaxies are often comparable or even larger than

the sizes of caustic components. Very often two or more partial images are joined into a single

macro-image, which may form large ring-like images such as the example shown in Figure 5.1.

The amplification of such images cannot be approximated by the point-source amplification, it

has to be evaluated using Equation (2.5).

5.3 Quasar Microlensing

The regime of quasar microlensing (Schmidt & Wambsganss 2010) is driven by secondary

light deflection due to stars of the lens galaxy lying in the vicinity of a particular macro-image

of the quasar source (such as one of the dark-orange images in the left panel of Figure 5.1).

The relative proper motions of lensed quasars are sufficiently high for them to cross the caustics

formed by the stars on timescales of weeks to months. If the size of the emitting region of the

quasar is smaller than the characteristic structure scale of the caustic network, this motion may

cause substantial brightness variations detectable in the light curve of the macro-image.

The situation can be modeled adequately by computing the light deflection due to all stars

within a certain distance of the image position, in combination with the deflection due to a

constant convergence, shear, and phase. These describe the local influence of all continuous

matter plus all more distant stars. Using this model, the lens equation can written as

β =

1− κ− γ cos 2φ −γ sin 2φ

−γ sin 2φ 1− κ+ γ cos 2φ

 θ − θ̂E
2 ∑

i

Mi

M̂

θ − θi
|θ − θi|2

, (5.10)

where constants κ, γ, and ϕ are the local convergence, shear, and phase, respectively. The

summation includes all nearby stars with masses Mi and positions θi, and θ̂E is the Einstein

radius corresponding to mean stellar mass M̂ . The local axis orientation is often chosen with

the horizontal axis parallel to the phase, so that φ = 0.

The lens equation is generally not used for finding individual micro-images of the source.

Instead, it is used for constructing an amplification map in the source plane by inverse ray

shooting (Kayser et al. 1986), as mentioned in Section 2.2. With sufficiently small pixels for

collecting the rays in the source plane, the obtained map yields a good approximation of the

point-source amplification map, A0(β). For any size and brightness distribution I(β) of the
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quasar source, the amplification can be obtained by convolving the point-source amplification

map with I(β), as indicated by the first part of Equation (2.5). Wambsganss et al. (1992)

and Wambsganss (1999) describe examples of efficient numerical methods based on inverse ray

shooting.

In the top panel of Figure 5.2 we show an example of a quasar microlensing point-source

amplification map A0(β) for a stellar population in a random distribution corresponding to

convergence κ∗ = 0.3. As seen in the color bar, black corresponds to unit amplification and

the caustics can be seen as the yellowish boundaries of the higher-amplification regions. In

this simple example, the external convergence and shear are neglected and all stars have the

same mass. The source-plane axes are marked in stellar Einstein radii, which are typically

∼ 10−6arcsec for lens-galaxy stars.

The red dashed line indicates a sample trajectory of the source center, for which light curves

are shown in the bottom panel. Four different uniform sources are illustrated to scale at top

right: a point-like source, a small elliptical source, a large elliptical source (an inclined quasar

disk), and a large circular source (the same disk in a face-on orientation). The corresponding

light curves show a decreasing amplitude of their variations with source size, highest for the

point-like source and lowest for the large sources. The light curves can be seen to be sensitive

to the size and geometry of the source. Individual caustic crossings and approaches can be

studied in the figure, for example, the first light-curve feature (a cusp approach) is not very

sensitive to the differences between the sources, while the last feature (a cusp crossing) shows

high sensitivity to source size. Not illustrated here, the caustic crossings are also shaped by the

surface brightness distribution of the source, just as caustic crossings in microlensing events in

our Galaxy follow the limb darkening of the source star (as shown in Figure 4.2).

The analyses of quasar microlensing observations have led to a number of unique measure-

ments of properties of the quasar source. Some of the best results were obtained for quasar QSO

2237+0305, the quadruply imaged source in the “Einstein Cross” gravitational lens. Eigenbrod

et al. (2008) used data from photometric and spectroscopic monitoring of the images to mea-

sure the size of the UV-continuum-emitting region of the quasar accretion disk as a function of

wavelength, with results showing agreement with theoretical expectations for emission from a



5: Lensing By Galaxies 45

0A ( )β


Figure 5.2: Quasar microlensing. Top: point-source amplification map A0(β) with source-center

trajectory (red dashed line); projections of different quasar sources are shown at the right side. Bottom:

quasar microlensing light curves (plotted here as a function of horizontal source-center position) for

the four sources moving along the same trajectory. Horizontal axes of both panels are aligned for

better correspondence of the light curves in the bottom panel with source position in the top panel.

thin accretion disk. For the same system, Sluse et al. (2011) used spectrophotometric data for

two carbon emission lines to measure the size of the broad line region of the quasar.

In quasar accretion disks, higher energy emission generally arises from more compact regions,



46 Gravitational Lensing

with the hardest X-rays emitted from the innermost parts of the disk in the vicinity of the

central black hole. X-rays should thus achieve highest microlensing variability, due to the small

angular size of their emitting region which can lead to significant amplification even in high-

density caustic networks. For six gravitationally lensed quasars monitored using the Chandra

X-ray Observatory, Chen et al. (2012) detected microlensing in all of them. They also found

strong iron Kα emission in all of them, indicating that the line is emitted from a more compact

region than the X-ray continuum. In another gravitationally lensed quasar, RX J1131-1231,

monitoring by Chartas et al. (2012) revealed changes in the measured Fe Kα line profile in the

course of a microlensing caustic crossing. In this event the caustic resolved the emitting region

in the inner disk of the quasar near the central black hole, where the line profile is dominated by

strong-gravity effects. Quasar microlensing thus also provides a unique opportunity to resolve

the innermost emitting region and test theoretical models of its structure.

5.4 Included Paper on Quasar Microlensing

In the fourth included paper (Ledvina et al. 2018, Appendix D) we studied microlensing

of the Fe Kα line theoretically, using a fully relativistic model of emission from an inclined

thin accretion disk in the equatorial plane of a Kerr black hole. For simplicity, we used a

maximally rotating Kerr black hole, for which the horizon coincides with the innermost stable

circular orbit (ISCO). Due to the small size of the emitting region, we studied a single caustic

crossing of the quasar disk by a linear fold caustic instead of using a simulated caustic network.

We demonstrated new spectral features appearing in the line profile, shifting in energy and

eventually disappearing in the course of the crossing. We explained the emergence of these

features in terms of the location of the caustic with respect to constant energy-shift contours

on the inclined disk (or, more exactly, on its asymptotic projection in the observer’s plane of

the sky). New peaks occur at energies with contours tangent from the inner side of the caustic,

while new step-function edges occur at energies with contours tangent from the outer side of the

caustic. We used an analytical model to derive the shape of these spectral features. Observed

sequences of X-ray line-profiles can thus be used to constrain the geometry and physics of the

innermost accretion disk.



Chapter 6

Lensing By Clusters of Galaxies

6.1 Galaxy Clusters as Gravitational Lenses

Galaxy clusters and superclusters are the largest gravitationally bound astrophysical objects

that have formed by the current epoch in the history of the universe. Although rich clusters

may contain up to thousands of galaxies, these constitute only a small fraction of their total

mass. In the galaxy-cluster mass budget galaxies come in third (at ∼ 5% of the total mass)

after the dominant dark matter halo (∼ 85%) and hot X-ray emitting intracluster gas (∼ 10%).

Massive galaxy clusters display a whole range of gravitational lensing phenomena, with hosts

of objects in the background observable universe acting as sources. Strong lensing by the overall

lens potential of the cluster forms multiple images of galaxies (and quasars) primarily behind

the central region, some of them in the form of giant arcs (Hennawi et al. 2008). Galaxies in

the background of the outer parts of the cluster are weakly lensed by its gravitational field,

leading to weak distortions of their appearance as described in Section 6.2. Galaxies in the

background of cluster-member galaxies may be strongly lensed by them. Supernovae occurring

in multiply imaged background galaxies may be observed repeatedly with large time delays in

the individual images (Kelly et al. 2016). Even individual stars in background galaxies may be

microlensed by the fine-structure caustic network near the cluster caustic, as shown by Kelly

et al. (2018).

As seen from the included example in Figure 6.1, lensing galaxy clusters are spectacular

targets for imaging. Abell 370 is one of the clusters studied within the deep-imaging Frontier

47
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Figure 6.1: Galaxy cluster Abell 370 imaged by the Hubble Space Telescope. The thin arcs are

images of lensed background galaxies. Image credit: NASA, ESA/Hubble, HST Frontier Fields

Fields survey (Lotz et al. 2017). The image shows the central region of the cluster with numerous

cluster-member galaxies (primarily the pale yellow ellipticals), many background galaxies (some

at very high redshifts), and some foreground galaxies as well (Lagattuta et al. 2019). The

thin arcs with primarily tangential (concentric) orientation scattered throughout the field are

strongly lensed background galaxies. The most prominent thicker arc to the lower left of the

center can be seen to be formed by multiple images of a background spiral galaxy. A similar

background spiral galaxy can be seen to the upper left of the center, in this case strongly

lensed by the foreground cluster-member galaxy. For observing background galaxies the cluster

https://hubblesite.org/contents/news-releases/2017/news-2017-20.html
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acts as a powerful gravitational telescope, magnifying their angular size so that details of their

structure can be studied, and amplifying their flux so that even extremely faint high-redshift

galaxies can be detected.

6.2 Weak Lensing and Cluster Mass Reconstruction

While the distribution of strongly lensed systems helps to constrain and trace out the

distribution of matter in the inner part of the lensing galaxy cluster, weak lensing is crucial for

mapping the distribution in the larger outer parts of the cluster.

Weak lensing is based on two assumptions: negligible variation of the lens convergence,

shear, and phase on the scale of background galaxy images, and a weak lensing effect of the

foreground gravitational field represented by low values of the convergence and shear, κ, γ ≪ 1.

The first assumption implies that the lens equation is locally well approximated by its lin-

earized version given by Equation (2.14). The geometry of images can be determined from

Equation (2.15) using the inverted Jacobian matrix from Equation (2.16) evaluated at the

source-center image position θc.

Figure 6.2 illustrates the geometry of an image of a circular source formed by the linearized

lens equation with convergence κ = 0.1, shear γ = 0.2, and phase φ = 120◦. The unit-radius

circle in the source plane (left plot) appears in the lens plane (right plot) as an ellipse with

semi-major axis 1/|1 − κ − γ|, semi-minor axis 1/|1 − κ + γ|, and major axis oriented in the

direction of the phase. For κ > 1 the relative sizes of the semi-axes flip and the major axis

is oriented perpendicularly to the phase. Note that the image is deformed and may even be

mirrored, but not rotated. For example, the point marked in the figure lying on the source in

the direction of the phase appears on the image along the same direction.

With the assumption of low convergence and shear the semi-minor to semi-major axis ratio

of the image can be approximated to first order in κ and γ by |1− κ− γ|/|1− κ+ γ| ≈ 1− 2 γ.

This simple expression shows that the measured axis ratio of the image can yield the local shear

value. Although real lensed galaxies cannot be treated as circular sources, a statistical analysis

of the axis ratios and orientations of many lensed galaxies in the background of a particular

region of the cluster averages out their intrinsic shapes and orientations and yields the shear
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Figure 6.2: Imaging by the linearized lens equation. A unit-radius circular source (left panel) appears

as an elliptical image (right panel) with the sizes and orientations of its semi-axes marked in the figure.

Illustrated for convergence κ = 0.1, shear γ = 0.2, and phase φ = 120◦.

and phase of the foreground gravitational field. For a sufficiently high number of background

galaxies, lens-plane maps of γ cos 2φ and γ sin 2φ can be constructed. Fourier transformation

of Equation (2.11) and Equation (2.9) shows that the Fourier images of these maps can be used

to compute the Fourier image of κ. Transformation back to real space yields the convergence

κ(θ), which provides a map of the surface density of the lensing galaxy cluster.

This bird’s-eye-view description indicates the basic principle of the method for mapping the

mass distribution of the cluster from image shapes of background galaxies, originally developed

by Kaiser & Squires (1993). While several clusters had been analyzed earlier using other tech-

niques, most subsequent weak-lensing cluster mass reconstructions have been based on variants

of the Kaiser–Squires algorithm. Examples of clusters with mass distributions mapped by weak

lensing include Abell 2218 (Squires et al. 1996) or Abell 2163 (Squires et al. 1997). A weak-

lensing analysis of 50 galaxy clusters by Okabe et al. (2013) showed that the average cluster

density distribution closely followed the Navarro–Frenk–White profile (Navarro et al. 1997), as

predicted by cosmological structure-formation simulations of a cold dark matter universe.

Arguably the most famous result was obtained by Clowe et al. (2004), who mapped the

cluster 1E 0657-558 (the Bullet Cluster) consisting of two subclusters separated after a head-on

collision. The results showed that the total matter distribution (dominated by dark matter)

peaked at positions offset from the peaks of the baryonic matter distribution (dominated by

X-ray emitting intracluster gas). The dark matter peaks coincided with the concentrations of
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galaxies of the subclusters, while their intracluster gas distributions lagged behind, slowed down

by their super-sonic collision indicated by an observed shock front. In addition to demonstrating

the different distribution of dark and baryonic matter, the analysis illustrated the collision-less

nature of dark matter. Using numerical simulations of the colliding subclusters, Randall et

al. (2008) derived an upper limit on the self-interaction cross section of dark matter particles.

The properties of the Bullet Cluster are hard to explain by alternative theories assuming only

baryonic matter with an altered description of gravitation.

While the early cluster mass reconstructions were based purely on weak lensing, more state-

of-the-art approaches combine the weak-lensing data with analyses of strong lensing. While the

former provide information on the large-scale distribution, particularly in the outer regions of

the cluster, the latter provide better constraints for the mass distribution in the central region.

Cluster mass distribution maps based on the combined analysis are available for a number of

clusters, including the Bullet Cluster (Bradač et al. 2006) or Abell 370 (Strait et al. 2018). One

of the goals of such reconstructions is to improve the spatial resolution of the maps, in order

to study the finer structure and populations of substructures in the matter distribution.

For weak lensing this requires a larger number of detected background galaxies to improve

the statistical analysis. In the inner regions of the cluster this requires a careful analysis to

detect signatures of “galaxy-galaxy” strong-lensing systems. A detailed analysis of 11 galaxy

clusters by Meneghetti et al. (2020) revealed a surprisingly high number of such systems, indi-

cating a lensing efficiency of the corresponding substructures much higher than expected from

clusters formed in cold dark matter simulations. Further research will show whether this very

recent result just reflects some overlooked issue in the analysis or it stands up to scrutiny and

poses a challenge to current structure-formation simulations.

6.3 Included Papers on Cluster Lensing

In the fifth included paper (Karamazov et al. 2021, Appendix E) we explore gravitational

lensing by a single point mass embedded in a spherically symmetric Navarro–Frenk–White dark-

matter halo. This extremely simple model can serve as a starting point for studying the influence

of compact substructures on the lensing by the large-scale distribution of matter in a galaxy-



52 Gravitational Lensing

cluster halo. Lensing by the model can be studied analytically and the low number of parameters

permits a systematic exploration of its parameter space. In this paper we concentrate on the

structure of the critical curves and caustics of the model as a function of mass and radial

position of the point mass within the halo. Initial tests revealed an unexpected richness of

critical-curve topologies and caustic structures, as illustrated by the galleries in Figures 5.A

and 5.B. We found that point masses heavier than a critical mass (about 4 · 10−4 of the halo

mass) are strong enough to suppress the radial critical curve and caustic of the halo when

positioned at its center. We mapped the boundaries between different critical curve topologies

in the point-mass parameter space, with Figure 6 showing their overall complex structure.

The corresponding caustics undergo many different metamorphoses, including lips and elliptic,

hyperbolic and parabolic umbilics, with several examples demonstrated in detail. Overall,

although lower masses affect smaller areas of the lens plane, the corresponding changes of the

critical curve and caustic with position are more complex than for higher masses. In Appendix B

we illustrate the peculiar properties of the radial critical curve and caustic (linear but not a

fold) in the case of the critical mass.

In the sixth included paper (Karamazov & Heyrovský 2021, Appendix F) we study the same

model, this time exploring its shear, phase, and image geometry. We derive formulae for the

combined shear and phase and illustrate the involved geometry. We describe the occurrence

of zero-shear points and identify the conditions when they form umbilic points. We present

grids of image-plane maps of the shear, phase, and their weak-lensing approximation for the

same combinations of point-mass parameters as in Appendix E. We include also grids of plots

of relative deviations of the different quantities to illustrate the perturbing effect of the point

mass, or the relative error introduced by the weak-lensing approximation. We introduce in

Figure 14 the convergence–shear diagram as a new tool for visualizing the geometries of small-

source images formed by a gravitational lens anywhere in the image plane. We demonstrate its

usage on an unperturbed NFW halo in Figure 3, and utilize them to illustrate the properties of

images formed by our model in Figures 8.A and 8.B. We discuss the implications and relevance

of our results for more realistic lens models.



Chapter 7

Conclusions

The papers included in this collection present a sample of the outcome of our ongoing study

of gravitational lensing. In each of them we achieved new results and provided answers to

some of the initially formulated questions. At the same time, each of them opened up new

questions and new problems to be explored. We conclude here by mentioning at least some

open questions and directions of further research for the three presented topics.

One of the main questions left unanswered by our triple-lens research is how many lensing

regimes does the triple lens have? If we define the regimes by their critical-curve topology,

we found a total of eleven in comparison with the three regimes of the two-point-mass lens.

Interestingly, the number of regimes depends on the combination of masses. Of the three

combinations studied in detail in Appendix C, the equal-mass triple has nine regimes while

the planet-in-binary and the star-planet-moon triples have eleven. While the demonstrated

parameter-space mapping reveals all regimes for a given combination of masses, the sample

results cannot guarantee that no other regime would appear for a different combination.

In principle, one could employ a similar method using different three parameters of the lens,

such as keeping the shape of the configuration fixed while varying the relative masses and the

perimeter of the configuration. However, this would add just different three-dimensional cuts

through the five-dimensional parameter space. In other words, even a combination with this

approach would not provide a full mapping of the parameter space of the lens. Nevertheless,

there may be other methods to identify the range of possible critical-curve topologies, for

example by studying the sequences of transitions occurring from the close to the wide limit,
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guided by the structure of the Jacobian as a surface over the lens plane. The answer seems

elusive, but it may well be within reach.

In our quasar microlensing research on the changing X-ray line-profile features in the course

of a caustic crossing event, we demonstrated the effects occurring for an accretion disk sur-

rounding a maximally rotating Kerr black hole. A study of the effects for a central black hole

with a different spin parameter (including a Schwarzschild black hole) is currently underway.

In such a case the innermost stable circular orbit (ISCO) defining the inner edge of the disk lies

outside the horizon instead of coinciding with it. The caustic position with respect to the ISCO

then plays an additional role, generating distinct line-profile features. The overall variability of

the line profile can be expected to be even higher, possibly yielding a sequence of microlensed

profiles during a caustic crossing similar to those detected by Chartas et al. (2012). This can

then be shown by exploring the sequences of line-profile changes within the studied model.

Our exploration of the lensing impact of massive objects in a dark matter halo offers many

possible enhancements of the studied elementary model of a point-mass lens in a spherical NFW

halo. For example, replacing the point mass with a dark matter subhalo (spherical or elliptical),

or exploring the combined influence of two objects to identify the conditions under which they

generate independent critical-curve and caustic features or more complex combined features.

At present we are carrying out simulations of lensing by a NFW cluster halo with a population

of ellipsoidal subhalos (better galaxy model than a point mass), generating plots of the critical

curves, caustics, maps of the shear, phase, and the other quantities studied in Appendix F. By

comparing the results with those of the systematically explored simple model presented here we

hope to achieve better understanding of the specific lensing impact of different substructures.
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Duchêne, G. & Kraus, A. 2013, Annual Review of Astronomy and Astrophysics, 51, 269

Eigenbrod, A., Courbin, F., Meylan, G., et al. 2008, Astronomy & Astrophysics, 490, 933

Einstein, A. 1936, Science, 84, 506

Erdl, H. & Schneider, P. 1993, Astronomy & Astrophysics, 268, 453

Fouqué, P., Heyrovský, D., Dong, S., et al. 2010, Astronomy & Astrophysics, 518, A51



References 57

Gaudi, B. S. 2021, arXiv:2102.01715

Gaudi, B. S., Bennett, D. P., Udalski, A., et al. 2008, Science, 319, 927

Gould, A., Dong, S., Gaudi, B. S., et al. 2010, The Astrophysical Journal, 720, 1073

Gould, A., Udalski, A., Shin, I.-G., et al. 2014, Science, 345, 46

Han, C. 2008, The Astrophysical Journal, 684, 684

Han, C., Bennett, D. P., Udalski, A., et al. 2019, The Astronomical Journal, 158, 114

Han, C. & Han, W. 2002, The Astrophysical Journal, 580, 490

Han, C., Lee, C.-U., Udalski, A., et al. 2020, The Astronomical Journal, 159, 48

Han, C., Udalski, A., Choi, J.-Y., et al. 2013, The Astrophysical Journal Letters, 762, L28

Han, C., Udalski, A., Gould, A., et al. 2017, The Astronomical Journal, 154, 223

Han, C., Udalski, A., Kim, D., et al. 2021, The Astronomical Journal, 161, 270

Hennawi, J. F., Gladders, M. D., Oguri, M., et al. 2008, The Astronomical Journal, 135, 664

Herlt, E. & Stephani, H. 1976, International Journal of Theoretical Physics, 15, 45
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