116 research outputs found
A New Method to Reconstruct Recent Tree and Stand Attributes of Temporary Research Plots: New Opportunity to Analyse Mixed Forest Stands
In the last decades, studying effects of mixing tree species is increasingly important. In particular, under changing growing conditions and social requirements, investigations on mixed forest compared to mono-specific stands are of special interest, for example, stability, resilience or ecosystem services. Permanent forest research plots are a unique data source, providing the required information but being time-consuming and costly to establish. Moreover, large data sets of such plots are missing but needed for generalising any findings. Temporary research plots provide ad hoc information of its status quo and require less effort than permanent plots. Usually, such plots provide no information of the recent tree and stand characteristics. We demonstrate a new method developed under the scope of COST action FP 1206 EuMIXFOR (European Network on Mixed Forests) to estimate retrospective tree dynamics and stand characteristics. The results of validation reveal its usefulness for reconstructing 5–10 years. Thus, the method provides new potential in establishing larger networks across several countries, in particular, for studying underlying processes when comparing mono-specific with mixed forest stands
Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - a dynamic, sensitive equilibrium
Quercus robur/Quercus petraea and Pinus sylvestris are widely distributed and economically important tree species in Europe co-occurring on mesotrophic, xeric and mesic sites. Increasing dry conditions may reduce their growth, but growth reductions may be modified by mixture, competition and site conditions. The annual diameter growth in monospecific and mixed stands along an ecological gradient with mean annual temperatures ranging from 5.5 °C to 11.5 °C was investigated in this study. On 36 triplets (108 plots), trees were cored and the year-ring series were cross-dated, resulting in year-ring series of 785 and 804 trees for Q. spp. and P. sylvestris, respectively. A generalized additive model with a logarithmic link was fit to the data with random effects for the intercept at the triplet, year and tree level and a random slope for the covariate age for each tree; the Tweedie-distribution was used. The final model explained 87 % of the total variation in diameter increment for both tree species. Significant covariates were age, climate variables (long-term mean, monthly), local competition variables, relative dbh, mixture, stand structure and interactions thereof. Tree growth declined with age and local density and increased with social position. It was positively influenced by mixture and structural diversity (Gini coefficient); mixture effects were significant for P. sylvestris only. The influence of potential evapotranspiration (PET) in spring and autumn on tree growth was positive and non-linear, whereas tree growth sharply decreased with increasing PET in June, which proved to be the most influential month on tree growth along the whole ecological gradient. Interactions of PET with tree social position (relative dbh) were significant in July and September for Q. spp. and in April for P. sylvestris. Interactions of climate with density or mixture were not significant. Climatic effects found agree well with previous results from intra-annual growth studies and indicate that the model captures the causal factors for tree growth well. Furthermore, the interaction between climate and relative dbh might indicate a longer growth duration for trees of higher social classes. Analysis of random effects across time and space showed highly dynamic patterns, with competitive advantages changing annually between species and spatial patterns showing no large-scale trends but pointing to the prevalence of local site factors. In mixed-species stands, the tree species have the same competitivity in the long-term, which is modified by climate each year. Climate warming will shift the competitive advantages, but the direction will be highly site-specific.The authors thank the European Union for funding the project “Mixed species forest management. Lowering risk, increasing resilience (REFORM)” under the framework of Sumforest ERA-NET. All contributors thank their national funding institutions to establish, measure and analyze data from the triplets. The Polish State Forests Enterprise also supported one of the Polish co-authors (Grant No: OR.271.3.15.2017). The Orléans site, OPTMix was installed thanks to ONF (National Forest Service, France), belongs to research infrastructure ANAEE-F; it is also included in the SOERE TEMPO, ZAL (LTSER Zone Atelier Loire) and the GIS oop network. This work was also supported by grant APVV-18-0347 (Slovakia). We acknowledge Institutional support MZE-RO0118 from the Ministry of Agriculture of the Czech Republic, partly funding the field measurements at Czech triplets
Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce
Climate change is increasing the severity and frequency of droughts around the globe, leading to tree mortality that reduces production and provision of other ecosystem services. Recent studies show that growth of mixed stands may be more resilient to drought than pure stands. The two most economically important and widely distributed tree species in Europe are Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.), but little is known about their susceptibility to drought when coexist. This paper analyses the resilience (resistance, recovery rate and recovery time) at individual-tree level using a network of tree-ring collections from 22 sites along a climatic gradient from central Europe to Scandinavia. We aimed to identify differences in growth following drought between the two species and between mixed and pure stands, and how environmental variables (climate, topography and site location) and tree characteristics influence them. We found that both the timing and duration of drought drive the different responses between species and compositions. Norway spruce showed higher vulnerability to summer drought, with both lower resistance and a longer recovery time than Scots pine. Mixtures provided higher drought resistance for both species compared to pure stands, but the benefit decreases with the duration of the drought. Especially climate sensitive and old trees in climatically marginal sites were more affected by drought stress. Synthesis. Promoting Scots pine and mixed forests is a promising strategy for adapting European forests to climate change. However, if future droughts become longer, the advantage of mixed stands could disappear which would be especially negative for Norway spruce
Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe
Many studies show that mixed species stands can have higher gross growth, or so-called overyielding, compared with monocultures. However, much less is known about mortality in mixed stands. Knowledge is lacking, for example, of how much of the gross growth is retained in the standing stock and how much is lost due to mor-tality. Here, we addressed this knowledge gap of mixed stand dynamics by evaluating 23 middle-aged, unthinned triplets of monospecific and mixed plots of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) repeatedly surveyed over 6-8 years throughout Europe. For explanation of technical terms in this abstract see Box 1.First, mixed stands produced more gross growth (+10%) but less net growth (-28%) compared with the weighted mean growth of monospecific stands. In monospecific stands, 73% of the gross growth was accumu-lated in the standing stock, whereas only 48% was accumulated in mixed stands. The gross overyielding of pine (2%) was lower than that of beech (18%). However, the net overyielding of beech was still 10%, whereas low growth and dropout of pine caused a substantial reduction from gross to net growth.Second, the mortality rates, the self-and alien-thinning strength, and the stem volume dropout were higher in mixed stands than monospecific stands. The main reason was the lower survival of pine, whereas beech persisted more similarly in mixed compared with monospecific stands.Third, we found a 10% higher stand density in mixed stands compared with monospecific stands at the first survey. This superiority decreased to 5% in the second survey.Fourth, the mixing proportion of Scots pine decreased from 46% to 44% between the first and second survey. The more than doubling of the segregation index (S) calculated by Pielou index (S increased from 0.2 to 0.5), indicated a strong tendency towards demixing due to pine.Fifth, we showed that with increasing water supply the dropout fraction of the gross growth in the mixture slightly decreased for pine, strongly increased for beech, and also increased for the stand as a whole. We discuss how the reduction of inter-specific competition by thinning may enable a continuous benefit of diversity and overyielding of mixed compared with monospecific stands of Scots pine and European beech
Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) – Site water supply and fertility modify the mixing effect
Tree species mixing has been widely promoted as a promising silvicultural tool for reducing drought stress. However, so far only a limited number of species combinations have been studied in detail, revealing inconsistent results. In this study, we analysed the effect of mixing Scots pine and oak (pedunculate oak and sessile oak) trees on their drought response along a comprehensive ecological gradient across Europe. The objective was to improve our knowledge of general drought response patterns of two fundamental European tree species in mixed versus monospecific stands. We focused on three null hypotheses: () tree drought response does not differ between Scots pine and oak, () tree drought response of Scots pine and oak is not affected by stand composition (mixture versus monoculture) and () tree drought response of Scots pine and oak in mixtures and monocultures is not modified by tree size or site conditions. To test the hypotheses, we analysed increment cores of Scots pine and oak, sampled in mixed and monospecific stands, covering a wide range of site conditions. We investigated resistance (the ability to maintain growth levels during drought), recovery (the ability to restore a level of growth after drought) and resilience (the capacity to recover to pre-drought growth levels), involving site-specific drought events that occurred between 1976 and 2015. In monocultures, oak showed a higher resistance and resilience than Scots pine, while recovery was lower. Scots pine in mixed stands exhibited a higher resistance, but also a lower recovery compared with Scots pine in monocultures. Mixing increased the resistance and resilience of oak. Ecological factors such as tree size, site water supply and site fertility were found to have significant effects on the drought response. In the case of Scots pine, resistance was increased by tree size, while recovery was lowered. Resistance of oak increased with site water supply. The observed mixing effect on the tree drought response of Scots pine and oak was in some cases modified by the site conditions studied. Positive mixing effects in terms of resistance and resilience of oak increased with site water supply, while the opposite was found regarding recovery. In contrast, site fertility lessened the positive mixing effect on the resistance of Scots pine. We hypothesise that the observed positive mixing effects under drought mainly result from water- and/or light-related species interactions that improve resource availability and uptake according to temporal and spatial variations in environmental conditions.This work was supported by the European Union as part of the ERA-Net SUMFOREST project REFORM – Mixed species forest management. Lowering risk, increasing resilience (2816ERA02S, PCIN2017-026) and the Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778322. All contributors thank their national funding institutions for supporting the establishment, mensuration and analysis of the studied triplets. The first author wants to thank the German Federal Ministry of Food and Agriculture (BMEL) for financial support through the Federal Office for Agriculture and Food (BLE) (grant number 2816ERA02S), as well as the Bayerische Staatsforsten (BaySF) and Landesbetrieb Forst Brandenburg for providing suitable research sites. Research on the Lithuanian triplets (LT 1, LT 2) was made possible by the national funding institution Research Council of Lithuania (LMTLT) (agreement number S-SUMFOREST-17-1). The French site FR 1 belongs to the OPTMix experimental site (https://optmix.irstea.fr), which is supported annually by Ecofor, Allenvi, and the French national research infrastructure ANAEE-F. A special thank is due to Peter Biber for supporting the statistical analysis
Mixing effects on Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) productivity along a climatic gradient across Europe
Mixed-species stands have been found to be more productive than would be expected from the performance of their component species in monocultures due to facilitation and complementarity between species, although these interactions depend on the combination of species present. Our study focuses on monospecific and mixed species stands of Scots pine and Norway spruce using 20 triplets established in nine countries along a climatic gradient across Europe. Differences in mean tree and stand characteristics, productivity and stand structure were assessed. Basal area increment in mixed stands was 8% higher than expected while volume increment was only 2% greater. Scots pine trees growing in mixed-species stands showed 11% larger quadratic mean diameter, 7% larger dominant diameter, 17% higher basal area and 25% higher stand volume than trees growing in mono specific stands. Norway spruce showed only a non-significant tendency to lower mean values of diameters, heights, basal area, as well standing volume in mixtures than monocultures. Stand structure indices differed between mixed stands and monocultures of Scots pine showing a greater stratification in mixed-species stands. Furthermore, the studied morphological traits showed little variability for trees growing in monospecific stands, except for diameter at breast height, crown length and crown length ratio. For trees growing in mixed stands, all the morphological traits of the trees were identified as different. Some of these morphological traits were associated with relative productivity. Nevertheless, relative productivity in mixed-species stands was not related to site conditions
Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe
The productivity and functioning of mixed-species forests often differs from that of monocultures. However, the magnitude and direction of these differences are difficult to predict because species interactions can be modified by many potentially interacting climatic and edaphic conditions, stand structure and previous management. Process-based forest growth models could potentially be used to disentangle the effects of these factors and thereby improve our understanding of mixed forest functioning while facilitating their design and silvicultural management. However, to date, the predicted mixing effects of forest growth models have not been compared with measured mixing effects. In this study, 26 sites across Europe, each containing a mixture and monocultures of Fagus sylvatica and Pinus sylvestris, were used to calculate mixing effects on growth and yield and compare them with the mixing effects predicted by the forest growth model 3-PGmix. The climate and edaphic conditions, stand structures and ages varied greatly between sites. The model performed well when predicting the stem mass and total mass (and mixing effects on these components), with model efficiency that was usually >0.7. The model efficiency was lower for growth or smaller components such as foliage mass and root mass. The model was also used to predict how mixing effects would change along gradients in precipitation, temperature, potential available soil water, age, thinning intensity and soil fertility. The predicted patterns were consistent with measurements of mixing effects from published studies. The 3-PG model is a widely used management tool for monospecific stands and this study shows that 3-PGmix can be used to examine the dynamics of mixed-species stands and determine how they may need to be managed.This article is based upon work from COST Action EuMIXFOR, supported by COST (European Cooperation in Science and Technology). Funding for the Czech Republic site was provided by the MŠMT projects COST CZ – LD14063 and LD14074. All contributors thank their national funding institutions and the forest owners for agreeing to establish the plots and to measure and analyse data from the plots. The first author was funded by a Heisenberg Fellowship (FO 791/4-1) from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). Mário Pereira was supported by European Investment Funds by FEDER/COMPETE/POCI– Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT – Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013 as well as by project Interact-Integrative Research in Environment, Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, co-financed by FEDER/NORTE 2020
- …