306 research outputs found

    Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by 1H NMR spectroscopy in a multilaboratory trial

    Get PDF
    We report an extensive 600 MHz NMR trial of a quantitative lipoprotein and small molecule measurements in human blood serum and plasma. Five centers with eleven 600 MHz NMR spectrometers were used to analyze 98 samples including: 20 QCs, 37 commercially sourced, paired serum and plasma samples and 2 National Institute of Science and Technology, NIST, reference material 1951c replicates. Samples were analyzed using rigorous protocols for sample preparation and experimental acquisition. A commercial lipoprotein subclass analysis was used to quantify 105 lipoprotein subclasses and 24 low molecular weight metabolites from the nuclear magnetic resonance, NMR, spectra. For all spectrometers, the instrument specific variance in measuring internal quality controls, QCs, was lower than the percentage described by the National Cholesterol Education Program, NCEP, criteria for lipid testing (triglycerides<2.7%, cholesterol<2.8%; LDL-cholesterol<2.8%; HDL-cholesterol<2.3%), showing exceptional reproducibility for direct quantitation of lipoproteins in both matrices. The average RSD for the 105 lipoprotein parameters in the 11 instruments was 4.6% and 3.9% for the two NIST samples while it was 38% and 40% for the 37 commercially sourced plasmas and sera, respectively, showing negligible analytical compared to biological variation. The coefficient of variance, CV, obtained for the quantification of the small molecules across the 11 spectrometers was below 15% for 20 out of the 24 metabolites analyzed. This study provides further evidence of the suitability of NMR for high-throughput lipoprotein subcomponent analysis and small molecule quantitation with the exceptional reproducibility required for clinical and other regulatory settings

    Dietary Inflammatory Index and Non-Communicable Disease Risk: A Narrative Review

    Get PDF
    There are over 1,000,000 publications on diet and health and over 480,000 references on inflammation in the National Library of Medicine database. In addition, there have now been over 30,000 peer-reviewed articles published on the relationship between diet, inflammation, and health outcomes. Based on this voluminous literature, it is now recognized that low-grade, chronic systemic inflammation is associated with most non-communicable diseases (NCDs), including diabetes, obesity, cardiovascular disease, cancers, respiratory and musculoskeletal disorders, as well as impaired neurodevelopment and adverse mental health outcomes. Dietary components modulate inflammatory status. In recent years, the Dietary Inflammatory Index (DII®), a literature-derived dietary index, was developed to characterize the inflammatory potential of habitual diet. Subsequently, a large and rapidly growing body of research investigating associations between dietary inflammatory potential, determined by the DII, and risk of a wide range of NCDs has emerged. In this narrative review, we examine the current state of the science regarding relationships between the DII and cancer, cardiometabolic, respiratory and musculoskeletal diseases, neurodevelopment, and adverse mental health outcomes. We synthesize the findings from recent studies, discuss potential underlying mechanisms, and look to the future regarding novel applications of the adult and children’s DII (C-DII) scores and new avenues of investigation in this field of nutritional research

    Srs2 removes deadly recombination intermediates independently of its interaction with SUMO-modified PCNA

    Get PDF
    Saccharomyces cerevisiae Srs2 helicase plays at least two distinct functions. One is to prevent recombinational repair through its recruitment by sumoylated Proliferating Cell Nuclear Antigen (PCNA), evidenced in postreplication-repair deficient cells, and a second one is to eliminate potentially lethal intermediates formed by recombination proteins. Both actions are believed to involve the capacity of Srs2 to displace Rad51 upon translocation on single-stranded DNA (ssDNA), though a role of its helicase activity may be important to remove some toxic recombination structures. Here, we described two new mutants, srs2R1 and srs2R3, that have lost the ability to hinder recombinational repair in postreplication-repair mutants, but are still able to remove toxic recombination structures. Although the mutants present very similar phenotypes, the mutated proteins are differently affected in their biochemical activities. Srs2R1 has lost its capacity to interact with sumoylated PCNA while the biochemical activities of Srs2R3 are attenuated (ATPase, helicase, DNA binding and ability to displace Rad51 from ssDNA). In addition, crossover (CO) frequencies are increased in both mutants. The different roles of Srs2, in relation to its eventual recruitment by sumoylated PCNA, are discussed

    Measuring and managing liquidity risk in the Hungarian practice

    Get PDF
    The crisis that unfolded in 2007/2008 turned the attention of the financial world toward liquidity, the lack of which caused substantial losses. As a result, the need arose for the traditional financial models to be extended with liquidity. Our goal is to discover how Hungarian market players relate to liquidity. Our results are obtained through a series of semistructured interviews, and are hoped to be a starting point for extending the existing models in an appropriate way. Our main results show that different investor groups can be identified along their approaches to liquidity, and they rarely use sophisticated models to measure and manage liquidity. We conclude that although market players would have access to complex liquidity measurement and management tools, there is a limited need for these, because the currently available models are unable to use complex liquidity information effectively

    Impact of parental lifestyle patterns in the preconception and pregnancy periods on childhood obesity

    Get PDF
    International audienceIntroduction High prevalence of overweight and obesity already observed in preschool children suggests the involvement of early-life risk factors. Preconception period and pregnancy are crucial windows for the implementation of child obesity prevention interventions with parental lifestyle factors as relevant targets. So far, most studies have evaluated their role separately, with only a few having investigated their potential synergistic effect on childhood obesity. Our objective was to investigate parental lifestyle patterns in the preconception and pregnancy periods and their association with the risk of child overweight after 5 years. Materials and methods We harmonized and interpreted results from four European mother-offspring cohorts participating in the EndObesity Consortium [EDEN, France; Elfe, France; Lifeways, Ireland; and Generation R, Netherlands] with data available for 1,900, 18,000, 1,100, and 9,500 families, respectively. Lifestyle factors were collected using questionnaires and included parental smoking, body mass index (BMI), gestational weight gain, diet, physical activity, and sedentary behavior. We applied principal component analyses to identify parental lifestyle patterns in preconception and pregnancy. Their association with risk of overweight (including obesity; OW-OB) and BMI z -scores between 5 and 12 years were assessed using cohort-specific multivariable logistic and linear and regression models (adjusted for potential confounders including parental age, education level, employment status, geographic origin, parity, and household income). Results Among the various lifestyle patterns derived in all cohorts, the two explaining the most variance were characterized by (1) “high parental smoking, low maternal diet quality (and high maternal sedentary behavior in some cohorts)” and, (2) “high parental BMI and low gestational weight gain.” Patterns characterized by high parental BMI, smoking, low diet quality or high sedentary lifestyle before or during pregnancy were associated with higher risk of OW-OB in children, and BMI z -score at any age, with consistent strengths of associations in the main cohorts, except for lifeways. Conclusion This project provides insight into how combined parental lifestyle factors in the preconception and pregnancy periods are associated with the future risk of child obesity. These findings are valuable to inform family-based and multi-behavioural child obesity prevention strategies in early life

    The insulin polymorphism -23Hph increases the risk for type 1 diabetes mellitus in the Romanian population

    Get PDF
    The insulin -23Hph and IGF2 Apa polymorphisms were genotyped in Romanian patients with T1DM (n = 204), T2DM (n = 215) or obesity (n = 200) and normoponderal healthy subjects (n = 750). The genotypes of both polymorphisms were distributed in concordance with Hardy-Weinberg equilibrium in all groups. The -23Hph AA genotype increased the risk for T1DM (OR: 3.22, 95%CI: 2.09-4.98, p < 0,0001), especially in patients without macroalbuminuria (OR: 4.32, 95%CI: 2.54-7.45, p < 0,0001). No other significant association between the alleles or genotypes of insulin -23Hph and IGF2 Apa and diabetes or obesity was identified

    Association analysis of the IGF1 gene with childhood growth, IGF-1 concentrations and type 1 diabetes.

    Get PDF
    AIMS/HYPOTHESIS: Insulin-like growth factor-1 is a major childhood growth factor and promotes pancreatic islet cell survival and growth in vitro. We hypothesised that genetic variation in IGF1 might be associated with childhood growth, glucose metabolism and type 1 diabetes risk. We therefore examined the association between common genetic variation in IGF1 and predisposition to type 1 diabetes, childhood growth and metabolism. MATERIALS AND METHODS: Variants in IGF1 were identified by direct resequencing of the exons, exon-intron boundaries and 5' and 3' regions in 32 unrelated type 1 diabetes patients. A tagging subset of these variants was genotyped in a collection of type 1 diabetes families (3,121 parent-child trios). We also genotyped a previously reported CA repeat in the region 5' to IGF1. A subset of seven tag single nucleotide polymorphism (SNPs) that captured variants with minor allele frequency (MAF) > or =0.05 was genotyped in 902 children from the Avon Longitudinal Study of Parents And Children with data on growth, IGF-1 concentrations, insulin secretion and insulin action. RESULTS: Resequencing detected 27 SNPs in IGF1, of which 11 had a MAF > 0.05 and were novel. Variants with MAF > or = 0.10 were captured by a set of four tag-SNPs. These SNPs showed no association with type 1 diabetes. In children, global variation in IGF1 was weakly associated with IGF-1 concentrations, but not with other phenotypes. The CA repeat in the region 5' to IGF1 showed no association with any phenotype. CONCLUSIONS/INTERPRETATION: Common genetic variation in IGF1 alters IGF-1 concentrations but is not associated with growth, glucose metabolism or type 1 diabetes

    BMI Changes During Childhood and Adolescence as Predictors of Amount of Adult Subcutaneous and Visceral Adipose Tissue in Men: The GOOD Study

    Get PDF
    Objective. The amount of visceral adipose tissue is a risk factor for the metabolic syndrome. It is unclear how body mass index (BMI) changes during childhood and adolescence predict adult fat distribution. We hypothesized that there are critical periods during development for the prediction of adult subcutaneous and visceral fat mass by BMI changes during childhood and adolescence. Research Design and Methods. Detailed growth charts were retrieved for the men participating in the population-based Gothenburg Osteoporosis and Obesity Determinants (GOOD) study (n=612). Body composition was analysed using Dual X-Ray Absorptiometry and adipose tissue areas using abdominal computed tomography at 18-20 years of age. Results. The main finding in the present study was that subjects with increases in BMI Z-score of >1 SD during adolescence had, independent of prepubertal BMI, both larger subcutaneous (+138%; p1 SD during late childhood had larger amount adult subcutaneous adipose tissue (+83%;

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults
    corecore