1,758 research outputs found
Direct Measurements of A_b and A_c using Vertex/Kaon Charge Tags at SLD
Exploiting the manipulation of the SLC electron-beam polarization, we present
precise direct measurements of the parity violation parameters A_c and A_b in
the Z boson - c quark and Z boson - b quark coupling. Quark/antiquark
discrimination is accomplished via a unique algorithm that takes advantage of
the precise SLD CCD vertex detector, employing the net charge of displaced
vertices as well as the charge of kaons that emanate from those vertices. From
the 1996-98 sample of 400,000 Z decays, produced with an average beam
polarization of 73.4%, we find A_c = 0.673 +/- 0.029 (stat.) +/- 0.023 (syst.)
and A_b = 0.919 +/- 0.018 (stat.) +/- 0.017 (syst.).Comment: 11 pages, 2 figures, 2 tables, to be submitted to Physical Review
Letters; version 2 reflects changes suggested by the refere
Measurement of the branching ratios of the Z0 into heavy quarks
We measure the hadronic branching ratios of the Z0 boson into heavy quarks:
Rb=Gamma(Z0->bb)/Gamma(Z0->hadrons) and Rc=Gamma(Z0->cc/Gamma(Z0->hadrons)
using a multi-tag technique. The measurement was performed using about 400,000
hadronic Z0 events recorded in the SLD experiment at SLAC between 1996 and
1998. The small and stable SLC beam spot and the CCD-based vertex detector were
used to reconstruct bottom and charm hadron decay vertices with high efficiency
and purity, which enables us to measure most efficiencies from data. We obtain,
Rb=0.21604 +- 0.00098(stat.) +- 0.00073(syst.) -+ 0.00012(Rc) and, Rc= 0.1744
+- 0.0031(stat.) +- 0.0020(syst.) -+ 0.0006(Rb)Comment: 37 pages, 8 figures, to be submitted to Phys. Rev. D version 2:
changed title to ratios, used common D production fractions for Rb and Rc and
corrected Zgamma interference. Identical to PRD submissio
A Search for Jet Handedness in Hadronic Decays
We have searched for signatures of polarization in hadronic jets from decays using the ``jet handedness'' method. The polar angle
asymmetry induced by the high SLC electron-beam polarization was used to
separate quark jets from antiquark jets, expected to be left- and
right-polarized, respectively. We find no evidence for jet handedness in our
global sample or in a sample of light quark jets and we set upper limits at the
95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing
power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure
Search for time-dependent B0s - B0s-bar oscillations using a vertex charge dipole technique
We report a search for B0s - B0s-bar oscillations using a sample of 400,000
hadronic Z0 decays collected by the SLD experiment. The analysis takes
advantage of the electron beam polarization as well as information from the
hemisphere opposite that of the reconstructed B decay to tag the B production
flavor. The excellent resolution provided by the pixel CCD vertex detector is
exploited to cleanly reconstruct both B and cascade D decay vertices, and tag
the B decay flavor from the charge difference between them. We exclude the
following values of the B0s - B0s-bar oscillation frequency: Delta m_s < 4.9
ps-1 and 7.9 < Delta m_s < 10.3 ps-1 at the 95% confidence level.Comment: 18 pages, 3 figures, replaced by version accepted for publication in
Phys.Rev.D; results differ slightly from first versio
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Measurement of the Branching Fraction for B- --> D0 K*-
We present a measurement of the branching fraction for the decay B- --> D0
K*- using a sample of approximately 86 million BBbar pairs collected by the
BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is
detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the
K*- through its decay to K0S pi-. We measure the branching fraction to be
B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid
Communications
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
The weak nucleon axial-vector form factor for quasi-elastic interactions is
determined using neutrino interaction data from the K2K Scintillating Fiber
detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of
which half are charged-current quasi-elastic interactions nu-mu n to mu- p
occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for
oxygen and assume the form factor is approximately a dipole with one parameter,
the axial vector mass M_A, and fit to the shape of the distribution of the
square of the momentum transfer from the nucleon to the nucleus. Our best fit
result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated
vector form factors from recent electron scattering experiments and a
discussion of the effects of the nucleon momentum on the shape of the fitted
distributions.Comment: 14 pages, 10 figures, 6 table
Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics
With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the
BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays
to ppbar. We measure a branching fraction Br(B+ --> p pbar
K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and
the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B
decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the
mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ -->
Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass
energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with
the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum
we have obtained the products of branching fractions for the omega and phi
mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and
B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the
e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range
1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events
have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18
+/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.
Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays
We present measurements of the branching fractions for the three-body decays
B0 -> D(*)-/+ K0 pi^+/-B0 -> D(*)-/+ K*+/- using
a sample of approximately 88 million BBbar pairs collected by the BABAR
detector at the PEP-II asymmetric energy storage ring.
We measure:
B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4}
B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4}
From these measurements we determine the fractions of resonant events to be :
f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) =
0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
- …