7,591 research outputs found

    Damage-cluster distributions and size effect on strength in compressive failure

    Get PDF
    We investigate compressive failure of heterogeneous materials on the basis of a continuous progressive damage model. The model explicitely accounts for tensile and shear local damage and reproduces the main features of compressive failure of brittle materials like rocks or ice. We show that the size distribution of damage-clusters, as well as the evolution of an order parameter, the size of the largest damage-cluster, argue for a critical interpretation of fracture. The compressive failure strength follows a normal distribution with a very small size effect on the mean strength, in good agreement with experiments

    Tracking Users across the Web via TLS Session Resumption

    Full text link
    User tracking on the Internet can come in various forms, e.g., via cookies or by fingerprinting web browsers. A technique that got less attention so far is user tracking based on TLS and specifically based on the TLS session resumption mechanism. To the best of our knowledge, we are the first that investigate the applicability of TLS session resumption for user tracking. For that, we evaluated the configuration of 48 popular browsers and one million of the most popular websites. Moreover, we present a so-called prolongation attack, which allows extending the tracking period beyond the lifetime of the session resumption mechanism. To show that under the observed browser configurations tracking via TLS session resumptions is feasible, we also looked into DNS data to understand the longest consecutive tracking period for a user by a particular website. Our results indicate that with the standard setting of the session resumption lifetime in many current browsers, the average user can be tracked for up to eight days. With a session resumption lifetime of seven days, as recommended upper limit in the draft for TLS version 1.3, 65% of all users in our dataset can be tracked permanently.Comment: 11 page

    A looking-out portal (LOP) approach to enhance qualitative aspects of bandwidth utilisation in academic networks

    Get PDF
    Campuses of educational institutions periodically need to increase network bandwidth to keep up with increased demand and this decision is based on the quantitative aspects of the network bandwidth utilisation. The qualitative utilisation of the bandwidth is seldom looked into. Improving the qualitative utilisation of the bandwidth may not even necessitate a network upgrade. Although blacklist-based access control techniques help to a certain degree, the findings of this research indicate otherwise. A multi-tier, whitelist-based, looking-out portal (LOP) approach is presented that promises to improve the qualitative utilisation of the network while positively impacting pertinent resource identification and location of sources on the internet. The authors draw on their years of experience serving as students and staff in various campuses of universities and colleges in various countries while making recommendations

    Quality and validity of large animal experiments in stroke : a systematic review

    Get PDF
    An important factor for successful translational stroke research is study quality. Low-quality studies are at risk of biased results and effect overestimation, as has been intensely discussed for small animal stroke research. However, little is known about the methodological rigor and quality in large animal stroke models, which are becoming more frequently used in the field. Based on research in two databases, this systematic review surveys and analyses the methodological quality in large animal stroke research. Quality analysis was based on the Stroke Therapy Academic Industry Roundtable and the Animals in Research: Reporting In Vivo Experiments guidelines. Our analysis revealed that large animal models are utilized with similar shortcomings as small animal models. Moreover, translational benefits of large animal models may be limited due to lacking implementation of important quality criteria such as randomization, allocation concealment, and blinded assessment of outcome. On the other hand, an increase of study quality over time and a positive correlation between study quality and journal impact factor were identified. Based on the obtained findings, we derive recommendations for optimal study planning, conducting, and data analysis/reporting when using large animal stroke models to fully benefit from the translational advantages offered by these models

    A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects

    Get PDF
    In this paper, we develop a phase-field model for binary incompressible (quasi-incompressible) fluid with thermocapillary effects, which allows for the different properties (densities, viscosities and heat conductivities) of each component while maintaining thermodynamic consistency. The governing equations of the model including the Navier-Stokes equations with additional stress term, Cahn-Hilliard equations and energy balance equation are derived within a thermodynamic framework based on entropy generation, which guarantees thermodynamic consistency. A sharp-interface limit analysis is carried out to show that the interfacial conditions of the classical sharp-interface models can be recovered from our phase-field model. Moreover, some numerical examples including thermocapillary convections in a two-layer fluid system and thermocapillary migration of a drop are computed using a continuous finite element method. The results are compared to the corresponding analytical solutions and the existing numerical results as validations for our model

    Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    Get PDF
    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles

    Statistical properties of fractures in damaged materials

    Full text link
    We introduce a model for the dynamics of mud cracking in the limit of of extremely thin layers. In this model the growth of fracture proceeds by selecting the part of the material with the smallest (quenched) breaking threshold. In addition, weakening affects the area of the sample neighbour to the crack. Due to the simplicity of the model, it is possible to derive some analytical results. In particular, we find that the total time to break down the sample grows with the dimension L of the lattice as L^2 even though the percolating cluster has a non trivial fractal dimension. Furthermore, we obtain a formula for the mean weakening with time of the whole sample.Comment: 5 pages, 4 figures, to be published in Europhysics Letter

    Probability Distribution of the Shortest Path on the Percolation Cluster, its Backbone and Skeleton

    Full text link
    We consider the mean distribution functions Phi(r|l), Phi(B)(r|l), and Phi(S)(r|l), giving the probability that two sites on the incipient percolation cluster, on its backbone and on its skeleton, respectively, connected by a shortest path of length l are separated by an Euclidean distance r. Following a scaling argument due to de Gennes for self-avoiding walks, we derive analytical expressions for the exponents g1=df+dmin-d and g1B=g1S-3dmin-d, which determine the scaling behavior of the distribution functions in the limit x=r/l^(nu) much less than 1, i.e., Phi(r|l) proportional to l^(-(nu)d)x^(g1), Phi(B)(r|l) proportional to l^(-(nu)d)x^(g1B), and Phi(S)(r|l) proportional to l^(-(nu)d)x^(g1S), with nu=1/dmin, where df and dmin are the fractal dimensions of the percolation cluster and the shortest path, respectively. The theoretical predictions for g1, g1B, and g1S are in very good agreement with our numerical results.Comment: 10 pages, 3 figure

    Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films

    Full text link
    The influence of uncorrelated (nonmagnetic) overlayers on the magnetic properties of thin itinerant-electron films is investigated within the single-band Hubbard model. The Coulomb correlation between the electrons in the ferromagnetic layers is treated by using the spectral density approach (SDA). It is found that the presence of nonmagnetic layers has a strong effect on the magnetic properties of thin films. The Curie temperatures of very thin films are modified by the uncorrelated overlayers. The quasiparticle density of states is used to analyze the results. In addition, the coupling between the ferromagnetic layers and the nonmagnetic layers is discussed in detail. The coupling depends on the band occupation of the nonmagnetic layers, while it is almost independent of the number of the nonmagnetic layers. The induced polarization in the nonmagnetic layers shows a long-range decreasing oscillatory behavior and it depends on the coupling between ferromagnetic and nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see: http://orion.physik.hu-berlin.d
    corecore