4 research outputs found

    Podocalyxin enhances breast tumor growth and metastasis and is a target for monoclonal antibody therapy

    Get PDF
    Introduction: Podocalyxin (gene name PODXL) is a CD34-related sialomucin implicated in the regulation of cell adhesion, migration and polarity. Upregulated expression of podocalyxin is linked to poor patient survival in epithelial cancers. However, it is not known if podocalyxin has a functional role in tumor progression. Methods: We silenced podocalyxin expression in the aggressive basal-like human (MDA-MB-231) and mouse (4T1) breast cancer cell lines and also overexpressed podocalyxin in the more benign human breast cancer cell line, MCF7. We evaluated how podocalyxin affects tumorsphere formation in vitro and compared the ability of podocalyxin-deficient and podocalyxin-replete cell lines to form tumors and metastasize using xenogenic or syngeneic transplant models in mice. Finally, in an effort to develop therapeutic treatments for systemic cancers, we generated a series of antihuman podocalyxin antibodies and screened these for their ability to inhibit tumor progression in xenografted mice. Results: Although deletion of podocalyxin does not alter gross cell morphology and growth under standard (adherent) culture conditions, expression of PODXL is required for efficient formation of tumorspheres in vitro. Correspondingly, silencing podocalyxin resulted in attenuated primary tumor growth and invasiveness in mice and severely impaired the formation of distant metastases. Likewise, in competitive tumor engraftment assays where we injected a 50:50 mixture of control and shPODXL (short-hairpin RNA targeting PODXL)-expressing cells, we found that podocalyxin-deficient cells exhibited a striking decrease in the ability to form clonal tumors in the lung, liver and bone marrow. Finally, to validate podocalyxin as a viable target for immunotherapy, we screened a series of novel antihuman podocalyxin antibodies for their ability to inhibit tumor progression in vivo. One of these antibodies, PODOC1, potently blocked tumor growth and metastasis. Conclusions: We show that podocalyxin plays a key role in the formation of primary tumors and distant tumor metastasis. In addition, we validate podocalyxin as potential target for monoclonal antibody therapy to inhibit primary tumor growth and systemic dissemination.Cellular and Physiological Sciences, Department ofMedicine, Faculty ofPharmaceutical Sciences, Faculty ofReviewedFacult

    Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    Get PDF
    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function
    corecore