4,161 research outputs found

    A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times

    Full text link
    The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.Comment: 21 pages, 11 figures. v2 matches published version: improved presentation (including title, abstract and references), results and conclusions unchange

    Modeling dust emission in PN IC 418

    Full text link
    We investigated the infrared (IR) dust emission from PN IC 418, using a detailed model controlled by a previous determination of the stellar properties and the characteristics of the photoionized nebula, keeping as free parameters the dust types, amounts and distributions relative to the distance of the central star. The model includes the ionized region and the neutral region beyond the recombination front (Photodissociation region, or PDR), where the [OI] and [CII] IR lines are formed. We succeeded in reproducing the observed infrared emission from 2 to 200~\mm. The global energy budget is fitted by summing up contributions from big grains of amorphous carbon located in the neutral region and small graphite grains located in the ionized region (closer to the central star). Two emission features seen at 11.5 and 30~\mm are also reproduced by assuming them to be due to silicon carbide (SiC) and magnesium and iron sulfides (Mgx_xFe1x_{1-x}S), respectively. For this, we needed to consider ellipsoidal shapes for the grains to reproduce the wavelength distribution of the features. Some elements are depleted in the gaseous phase: Mg, Si, and S have sub-solar abundances (-0.5 dex below solar by mass), while the abundance of C+N+O+Ne by mass is close to solar. Adding the abundances of the elements present in the dusty and gaseous forms leads to values closer to but not higher than solar, confirming that the identification of the feature carriers is plausible. Iron is strongly depleted (3 dex below solar) and the small amount present in dust in our model is far from being enough to recover the solar value. A remaining feature is found as a residue of the fitting process, between 12 and 25~\mm, for which we do not have identification.Comment: Accepted for publication in Astronomy & Astrophysics. V2: adding reference

    Synthesis, structural characterization and broadband ferromagnetic resonance in Li ferrite nanoparticles

    Get PDF
    Lithium ferrites are well known materials due to its numerous technological applications especially in microwave devices. Lithium ferrite nanoparticles were prepared by sol-gel technique by means of Pechini method, and then annealed at different temperatures in 250–1000 °C range. XRD confirms spinel formation with particles sizes in 15–700 nm range, with increased size with annealing temperature, whereas FTIR and Raman measurement confirm that single phase lithium ferrite with ordered cationic structure is obtained. Microwave magnetoabsorption data of the annealed lithium ferrite nanoparticles were obtained with a broadband system based on a network analyzer that operates up to 8.5 GHz. At fields up to 200 mT we can observe a broad absorption peak that shifts to higher frequencies with magnetic field according to ferromagnetic resonance theory. The amplitude of absorption, up to 85%, together with the frequency width of about 5.5 GHz makes this material suitable as wave absorber. FMR parameters like resonance field, linewidth and broadening are analyzed in order to obtain the characteristic parameters and analyze the microwave behaviour.publishe

    Corso, un buldog con ansiedad por separación

    Get PDF
    Se describe un caso de ansiedad por separación en un Buldog Francés macho de 1,7 años de edad. Sus dueños acuden a la consulta, ya que Corso destroza todo cuando se queda solo en casa. En un primer momento fue el salón, en donde fue necesario realizar obras de reparación de los destrozos provocados por el paciente. En la actualidad es un pasillo, su nueva ubicación cuando está solo. El tratamiento se compuso de tres partes: terapia farmacológica consistente en Trankimazin 1mg 1/24h y Fluoxetina 20mg 1/24h, la modificación de su entorno y una modificación de conducta, facilitada por el propio tratamiento farmacológico. Siete meses después, tras varios seguimientos, Corso es dado el alta, prolongándole el tratamiento farmacológico de Fluoxetina, media dosis durante un mes más.Privateering is described to a case of separation anxiety in a French Bulldog of 1,7 years, called Corso. The owners go to the clinic because Corso destroys everything when left alone at home. Initially was the living room where they had to make repairs of damage caused by Corso. Currently is a corridor, its new location when left alone. Treatment consisted of three parts: first the pharmacological treatment Trankimazin 1mg 1/24h and Fluoxetina 20mg 1/24h, then changing his environment and also a behavior modification helped by the pharmalogical treatment. Seven months later, and after several follow-ups, Corso was medical discharged but the pharmacological treatment was maintained for a month with half dose of Fluoxetina

    Broadband transverse susceptibility in multiferroic Y-type hexaferrite Ba0.5_{0.5}Sr1.5_{1.5}Co2_2Fe12_{12}O22{22}

    Full text link
    Single phase multiferroics in which ordered magnetic and ferroelectricity coexist, are of great interest for new multifunctional devices, and among them Y-type hexaferrites are good candidates. Transverse susceptibility measurements, which have been proved to be a versatile tool to study singular properties of bulk and nanoparticle magnetic systems, have been carried out with a broadband system on polycrystalline Y type hexaferrites with composition Ba0.5_{0.5}Sr1.5_{1.5}Co2_2Fe12_{12}O22{22}, optimal to exhibit multiferroic properties. In the temperature range 80-350 K transverse susceptibility measurements with DC fields up to ±\pm5000 Oe reveal different behaviour depending on the sintering temperature. The thermal evolution of the anisotropy field peak exhibit four regions with different slopes: positive in 80-130 K, negative in 130-200 K, constant in 200-280 K and negative in 280-350 K, which can be considered a signature of spin transitions in this compound.Comment: arXiv admin note: substantial text overlap with arXiv:2401.1614

    A statistical approach to quantify uncertainty in carbon monoxide measurements at the Izaña global GAW station: 2008–2011

    Get PDF
    Atmospheric CO in situ measurements are carried out at the Izaña (Tenerife) global GAW (Global Atmosphere Watch Programme of the World Meteorological Organization – WMO) mountain station using a Reduction Gas Analyser (RGA). In situ measurements at Izaña are representative of the subtropical Northeast Atlantic free troposphere, especially during nighttime. We present the measurement system configuration, the response function, the calibration scheme, the data processing, the Izaña 2008–2011 CO nocturnal time series, and the mean diurnal cycle by months

    The Golden Channel at a Neutrino Factory revisited: improved sensitivities from a Magnetised Iron Neutrino Detector

    Get PDF
    This paper describes the performance and sensitivity to neutrino mixing parameters of a Magnetised Iron Neutrino Detector (MIND) at a Neutrino Factory with a neutrino beam created from the decay of 10 GeV muons. Specifically, it is concerned with the ability of such a detector to detect muons of the opposite sign to those stored (wrong-sign muons) while suppressing contamination of the signal from the interactions of other neutrino species in the beam. A new more realistic simulation and analysis, which improves the efficiency of this detector at low energies, has been developed using the GENIE neutrino event generator and the GEANT4 simulation toolkit. Low energy neutrino events down to 1 GeV were selected, while reducing backgrounds to the 10410^{-4} level. Signal efficiency plateaus of ~60% for νμ\nu_\mu and ~70% for νˉμ\bar{\nu}_\mu events were achieved starting at ~5 GeV. Contamination from the νμντ\nu_\mu\rightarrow \nu_\tau oscillation channel was studied for the first time and was found to be at the level between 1% and 4%. Full response matrices are supplied for all the signal and background channels from 1 GeV to 10 GeV. The sensitivity of an experiment involving a MIND detector of 100 ktonnes at 2000 km from the Neutrino Factory is calculated for the case of sin22θ13101\sin^2 2\theta_{13}\sim 10^{-1}. For this value of θ13\theta_{13}, the accuracy in the measurement of the CP violating phase is estimated to be ΔδCP35\Delta \delta_{CP}\sim 3^\circ - 5^\circ, depending on the value of δCP\delta_{CP}, the CP coverage at 5σ5\sigma is 85% and the mass hierarchy would be determined with better than 5σ5\sigma level for all values of δCP\delta_{CP}

    Toroidal magnetized iron neutrino detector for a neutrino factory

    Get PDF
    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large θ13. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent δCP reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of δCP

    In-situ CO measurements at Izaña global GAW station: GC-RGA system, data processing, and 2008-2011 time series

    Get PDF
    Comunicación presentada en: 16th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques celebrado del 25 al 28 de octubre de 2011 en Wellington, Nueva Zelanda

    Neutrino oscillation physics with a higher γ\gamma β\beta-beam

    Full text link
    The precision measurement and discovery potential of a neutrino factory based on a storage ring of boosted radioactive ions (β\beta-beam) is re-examined. In contrast with past designs, which assume ion γ\gamma factors of 100\sim 100 and baselines of L=130 km, we emphasize the advantages of boosting the ions to higher γ\gamma and increasing the baseline proportionally. In particular, we consider a medium-γ\gamma scenario (γ500\gamma \sim 500, L=730 km) and a high-γ\gamma scenario (γ2000\gamma \sim 2000, L = 3000 km).The increase in statistics, which grow linearly with the average beam energy, the ability to exploit the energy dependence of the signal and the sizable matter effects at this longer baseline all increase the discovery potential of such a machine very significantly.Comment: An error corrected, conclusions unchanged. Revised version to appear in Nuclear Physics
    corecore