87 research outputs found

    Inter-Individual variability in insulin response after grape pomace supplementation in subjects at high cardiometabolic risk: role of microbiota and miRNA

    Get PDF
    Scope Dietary polyphenols have shown promising effects in mechanistic and preclinical studies on the regulation of cardiometabolic alterations. Nevertheless, clinical trials have provided contradictory results, with high inter‐individual variability. This study explores the role of gut microbiota and microRNAs (miRNAs) as factors contributing to the inter‐individual variability in polyphenol response. Methods and Results 49 subjects with at least two factors of metabolic syndrome are divided between responders (n = 23) or non‐responders (n = 26), depending on the variation rate in fasting insulin after grape pomace supplementation (6 weeks). The populations of selected fecal bacteria are estimated from fecal deoxyribonucleic acid (DNA) by quantitative real‐time polymerase chain reaction (qPCR), while the microbial‐derived short‐chain fatty acids (SCFAs) are measured in fecal samples by gas chromatography. MicroRNAs are analyzed on a representative sample, followed by targeted miRNA analysis. Responder subjects show significantly lower (p < 0.05) Prevotella and Firmicutes levels, and increased (p < 0.05) miR‐222 levels. Conclusion After evaluating the selected substrates for Prevotella and target genes of miR‐222, these variations suggest that responders are those subjects exhibiting impaired glycaemic control. This study shows that fecal microbiota and miRNA expression may be related to inter‐individual variability in clinical trials with polyphenols

    Multiple Processes Regulate Long-Term Population Dynamics of Sea Urchins on Mediterranean Rocky Reefs

    Get PDF
    We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management

    An ecosystem-based approach to assess the status of Mediterranean algae-dominated shallow rocky reefs.

    Get PDF
    A conceptual model was constructed for the functioning the algae-dominated rocky reef ecosystem of the Mediterranean Sea. The Ecosystem-Based Quality Index (reef-EBQI) is based upon this model. This index meets the objectives of the EU Marine Strategy Framework Directive. It is based upon (i) the weighting of each compartment, according to its importance in the functioning of the ecosystem; (ii) biological parameters assessing the state of each compartment; (iii) the aggregation of these parameters, assessing the quality of the ecosystem functioning, for each site; (iv) and a Confidence Index measuring the reliability of the index, for each site. The reef-EBQI was used at 40 sites in the northwestern Mediterranean. It constitutes an efficient tool, because it is based upon a wide set of functional compartments, rather than upon just a few species; it is easy and inexpensive to implement, robust and not redundant with regard to already existing indices

    Habitat and Scale Shape the Demographic Fate of the Keystone Sea Urchin Paracentrotus lividus in Mediterranean Macrophyte Communities

    Get PDF
    Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin Paracentrotus lividus in order to: 1) understand the main life-history bottlenecks by observing the degree of coupling between demographic stages; and 2) explore the processes driving these linkages. P. lividus is the dominant invertebrate herbivore in the Mediterranean Sea, and has been repeatedly observed to overgraze shallow beds of the seagrass Posidonia oceanica and rocky macroalgal communities. We used a hierarchical sampling design at different spatial scales (100 s, 10 s and <1 km) and habitats (seagrass and rocky macroalgae) to describe the spatial patterns in the abundance of different demographic stages (larvae, settlers, recruits and adults). Our results indicate that large-scale factors (potentially currents, nutrients, temperature, etc.) determine larval availability and settlement in the pelagic stages of urchin life history. In rocky macroalgal habitats, benthic processes (like predation) acting at large or medium scales drive adult abundances. In contrast, adult numbers in seagrass meadows are most likely influenced by factors like local migration (from adjoining rocky habitats) functioning at much smaller scales. The complexity of spatial and habitat-dependent processes shaping urchin populations demands a multiplicity of approaches when addressing habitat conservation actions, yet such actions are currently mostly aimed at managing predation processes and fish numbers. We argue that a more holistic ecosystem management also needs to incorporate the landscape and habitat-quality level processes (eutrophication, fragmentation, etc.) that together regulate the populations of this keystone herbivore

    Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    Get PDF
    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem

    Where Is More Important Than How in Coastal and Marine Ecosystems Restoration

    Get PDF
    Restoration is considered an effective strategy to accelerate the recovery of biological communities at local scale. However, the effects of restoration actions in the marine ecosystems are still unpredictable. We performed a global analysis of published literature to identify the factors increasing the probability of restoration success in coastal and marine systems. Our results confirm that the majority of active restoration initiatives are still concentrated in the northern hemisphere and that most of information gathered from restoration efforts derives from a relatively small subset of species. The analysis also indicates that many studies are still experimental in nature, covering small spatial and temporal scales. Despite the limits of assessing restoration effectiveness in absence of a standardized definition of success, the context (degree of human impact, ecosystem type, habitat) of where the restoration activity is undertaken is of greater relevance to a successful outcome than how (method) the restoration is carried out. Contrary to expectations, we found that restoration is not necessarily more successful closer to protected areas (PA) and in areas of moderate human impact. This result can be motivated by the limits in assessing the success of interventions and by the tendency of selecting areas in more obvious need of restoration, where the potential of actively restoring a degraded site is more evident. Restoration sites prioritization considering human uses and conservation status present in the region is of vital importance to obtain the intended outcomes and galvanize further actions

    Development and validation of a model to predict ceiling of care in COVID-19 hospitalized patients

    Get PDF
    Background: Therapeutic ceiling of care is the maximum level of care deemed appropiate to offer to a patient based on their clinical profile and therefore their potential to derive benefit, within the context of the availability of resources. To our knowledge, there are no models to predict ceiling of care decisions in COVID-19 patients or other acute illnesses. We aimed to develop and validate a clinical prediction model to predict ceiling of care decisions using information readily available at the point of hospital admission. Methods: We studied a cohort of adult COVID-19 patients who were hospitalized in 5 centres of Catalonia between 2020 and 2021. All patients had microbiologically proven SARS-CoV-2 infection at the time of hospitalization. Their therapeutic ceiling of care was assessed at hospital admission. Comorbidities collected at hospital admission, age and sex were considered as potential factors for predicting ceiling of care. A logistic regression model was used to predict the ceiling of care. The final model was validated internally and externally using a cohort obtained from the Leeds Teaching Hospitals NHS Trust. The TRIPOD Checklist for Prediction Model Development and Validation from the EQUATOR Network has been followed to report the model. Results: A total of 5813 patients were included in the development cohort, of whom 31.5% were assigned a ceiling of care at the point of hospital admission. A model including age, COVID-19 wave, chronic kidney disease, dementia, dyslipidaemia, heart failure, metastasis, peripheral vascular disease, chronic obstructive pulmonary disease, and stroke or transient ischaemic attack had excellent discrimination and calibration. Subgroup analysis by sex, age group, and relevant comorbidities showed excellent figures for calibration and discrimination. External validation on the Leeds Teaching Hospitals cohort also showed good performance. Conclusions: Ceiling of care can be predicted with great accuracy from a patient's clinical information available at the point of hospital admission. Cohorts without information on ceiling of care could use our model to estimate the probability of ceiling of care. In future pandemics, during emergency situations or when dealing with frail patients, where time-sensitive decisions about the use of life-prolonging treatments are required, this model, combined with clinical expertise, could be valuable. However, future work is needed to evaluate the use of this prediction tool outside COVID-19

    Joint effects of patch edges and habitat degradation on faunal predation risk in a widespread marine foundation species

    Get PDF
    Human activities degrade and fragment coastal marine habitats, reducing their structural complexity and making habitat edges a prevalent seascape feature. Though habitat edges frequently are implicated in reduced faunal survival and biodiversity, results of experiments on edge effects have been inconsistent, calling for a mechanistic approach to the study of edges that explicitly includes indirect and interactive effects of habitat alteration at multiple scales across biogeographic gradients. We used an experimental network spanning 17 eelgrass (Zostera marina) sites across the Atlantic and Pacific oceans and the Mediterranean Sea to determine (1) if eelgrass edges consistently increase faunal predation risk, (2) whether edge effects on predation risk are altered by habitat degradation (shoot thinning), and (3) whether variation in the strength of edge effects among sites can be explained by biogeographical variability in covarying eelgrass habitat features. Contrary to expectations, at most sites, predation risk for tethered crustaceans (crabs or shrimps) was lower along patch edges than in patch interiors, regardless of the extent of habitat degradation. However, the extent to which edges reduced predation risk, compared to the patch interior, was correlated with the extent to which edges supported higher eelgrass structural complexity and prey biomass compared to patch interiors. This suggests an indirect component to edge effects in which the impact of edge proximity on predation risk is mediated by the effect of edges on other key biotic factors. Our results suggest that studies on edge effects should consider structural characteristics of patch edges, which may vary geographically, and multiple ways that humans degrade habitats

    Collaborative database to track Mass Mortality Events in the Mediterranean Sea

    Get PDF
    Anthropogenic climate change, and global warming in particular, has strong and increasing impacts on marine ecosystems (Poloczanska et al., 2013; Halpern et al., 2015; Smale et al., 2019). The Mediterranean Sea is considered a marine biodiversity hotspot contributing to more than 7% of world\u2019s marine biodiversity including a high percentage of endemic species (Coll et al., 2010). The Mediterranean region is a climate change hotspot, where the respective impacts of warming are very pronounced and relatively well documented (Cramer et al., 2018). One of the major impacts of sea surface temperature rise in the marine coastal ecosystems is the occurrence of mass mortality events (MMEs). The first evidences of this phenomenon dated from the first half of \u201980 years affecting the Western Mediterranean and the Aegean Sea (Harmelin, 1984; Bavestrello and Boero, 1986; Gaino and Pronzato, 1989; Voultsiadou et al., 2011). The most impressive phenomenon happened in 1999 when an unprecedented large scale MME impacted populations of more than 30 species from different phyla along the French and Italian coasts (Cerrano et al., 2000; Perez et al., 2000). Following this event, several other large scale MMEs have been reported, along with numerous other minor ones, which are usually more restricted in geographic extend and/or number of affected species (Garrabou et al., 2009; Rivetti et al., 2014; Marb\ue0 et al., 2015; Rubio-Portillo et al., 2016, authors\u2019 personal observations). These events have generally been associated with strong and recurrent marine heat waves (Crisci et al., 2011; Kersting et al., 2013; Turicchia et al., 2018; Bensoussan et al., 2019) which are becoming more frequent globally (Smale et al., 2019). Both field observations and future projections using Regional Coupled Models (Adloff et al., 2015; Darmaraki et al., 2019) show the increase in Mediterranean sea surface temperature, with more frequent occurrence of extreme ocean warming events. As a result, new MMEs are expected during the coming years. To date, despite the efforts, neither updated nor comprehensive information can support scientific analysis of mortality events at a Mediterranean regional scale. Such information is vital to guide management and conservation strategies that can then inform adaptive management schemes that aim to face the impacts of climate change
    corecore