31 research outputs found

    Status and Prospects of Top-Quark Physics

    Full text link
    The top quark is the heaviest elementary particle observed to date. Its large mass of about 173 GeV/c^2 makes the top quark act differently than other elementary fermions, as it decays before it hadronises, passing its spin information on to its decay products. In addition, the top quark plays an important role in higher-order loop corrections to standard model processes, which makes the top quark mass a crucial parameter for precision tests of the electroweak theory. The top quark is also a powerful probe for new phenomena beyond the standard model. During the time of discovery at the Tevatron in 1995 only a few properties of the top quark could be measured. In recent years, since the start of Tevatron Run II, the field of top-quark physics has changed and entered a precision era. This report summarises the latest measurements and studies of top-quark properties and gives prospects for future measurements at the Large Hadron Collider (LHC).Comment: 76 pages, 35 figures, submitted to Progress in Particle and Nuclear Physic

    Stagnation of a 'Miracle': Botswana’s Governance Record Revisited

    Full text link

    Neuere wuerttembergische Rechtstatsachen zum Unternehmens- und Gesellschaftsrecht

    No full text
    SIGLEUuStB Koeln(38)-950106589 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Neuere wuerttembergische Rechtstatsachen zum Unternehmens- und Gesellschaftsrecht

    No full text
    SIGLEUuStB Koeln(38)-950106589 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Climate proxy data from SG-1 drill core (2.69-0.08 Ma; Qaidam Basin, NE Tibetan Plateau)

    No full text
    Knowing the evolution history of the climate systems in the Asian inland dominated by either the Westerlies or the Asian monsoon, and understanding their associated driving mechanisms are crucial for assessing future trends of climate and environmental conditions in this region, but both the evolution and mechanisms are still under debate. In this study, we present a comparative analysis of massive data from an accurately dated drill core retrieved from the Westerlies controlled western Qaidam Basin (QB), with records from the Chinese Loess Plateau (CLP) dominated by the East Asia summer monsoon (EASM), to track the time and frequency domain evolution patterns and dynamic changes of the QB and the CLP systems. The results infer two main conclusions. First, a critical transition in the evolution of Qaidam paleolake occurred at 0.8-0.6 Ma, characterized by striking changes in proxy variations and a system shift from periodic variations to more irregular fluctuations after 0.6 Ma. Second, a similar evolution pattern prevailed in the Qaidam paleolake region and in the EASM-dominated CLP between ~2.7 to ~1.2 Ma, but a divergence of both systems started at ~1.2 Ma and fully established after 0.6 Ma, when largely fluctuating climate conditions in the QB with a distinct drying trend was accompanied by synchronous largely fluctuated EASM with an increasing trend after 0.6 Ma. We suggest that ice sheet expansion in the Northern Hemisphere, promoted by co-occurrence of low obliquity amplitudes and low eccentricity, drove both systems across a threshold at ~1.2 Ma, and the internal forcing due to glaciation disturbed the previous response of both systems to solar insolation and led to the divergence of two systems. At ~0.9-0.8 Ma, a node of the 1.2-Myr obliquity cycle co-occurred with an eccentricity minimum, which together with coeval decrease in atmospheric CO2 concentration, could have facilitated a striking expansion of ice sheets. The resulting more equatorial and zonally oriented northern hemisphere westerly jet could serve as key factor leading to the final collapse of Qaidam paleolake after ~0.6 Ma, and the divergence of the QB and the CLP systems
    corecore