229 research outputs found

    Understanding Patterns and Functional Impacts of an Invasive Tree and Its Biological Control in a Riparian System

    Get PDF
    Invasive species have become an inextricable part of the landscape, particularly in riparian plant communities, and removal is often a key component of restoration programs. Biological control (biocontrol) is a method of removal that is often both efficient and effective. However, the impact of biocontrol on target species and indirect effects from invasive species removal can be hard to predict. While monitoring the impact of invasive species removal usually involves some species-based assessment such as changes in diversity, historically dominant species or native species, these strategies do not typically provide insight into the mechanisms underlying plant community response to removal. My research that I present here seeks to expand our understanding of the drivers underlying variations in impact of a biocontrol beetle (Diorhabda spp.) on a dominant invasive tree (Tamarix spp.) in the southwestern United States. I used spatial modeling to uncover underlying structure in the response of Tamarix to Diorhabda. I found evidence for compensatory growth in response to defoliation. I also showed that a large portion of spatially structured variation in Tamarix cover was not associated with abiotic conditions, suggesting that biotic factors may be more important in determining the impact of biocontrol. Biocontrol defoliation creates a natural gradient of invasive species cover across the landscape. I examined Tamarix dominated sites across a large geographic extent to understand how both the abiotic environment and varied levels of Tamarix influence the functional composition of underlying plant communities. I found that Tamarix cover encourages shade tolerance, sexual reproduction and short life cycles in the understory plant community. To better understand the long-term effect of Tamarix defoliation and the response to a specific defoliation event, I examined traits and functional diversity over the course of 8 years, up to 14 years after initial defoliation. This study provides evidence that understory plant communities stabilize after an initial defoliation event and supports the previous findings on plant community functional response to Tamarix. My research adds to the body of knowledge regarding the role of environmental filters in structuring the plant communities and aids land-managers in anticipating plant community response to invasive species removal

    A solution to treat mixed-type human datasets from socio-ecological systems

    Get PDF
    Coupled human and natural systems (CHANS) are frequently represented by large datasets with varied data including continuous, ordinal, and categorical variables. Conventional multivariate analyses cannot handle these mixed data types. In this paper, our goal was to show how a clustering method that has not before been applied to understanding the human dimension of CHANS: a Gower dissimilarity matrix with partitioning around medoids (PAM) can be used to treat mixed-type human datasets. A case study of land managers responsible for invasive plant control projects across rivers of the southwestern U.S. was used to characterize managers’ backgrounds and decisions, and project properties through clustering. Results showed that managers could be classified as “federal multitaskers” or as “educated specialists”. Decisions were characterized by being either “quick and active” or “thorough and careful”. Project goals were either comprehensive with ecological goals or more limited in scope. This study shows that clustering with Gower and PAM can simplify the complex human dimension of this system, demonstrating the utility of this approach for systems frequently composed of mixed-type data such as CHANS. This clustering approach can be used to direct scientific recommendations towards homogeneous groups of managers and project types

    A Solution to Treat Mixed-Type Human Datasets from Socio-Ecological Systems

    Get PDF
    Coupled human and natural systems (CHANS) are frequently represented by large datasets with varied data including continuous, ordinal, and categorical variables. Conventional multivariate analyses cannot handle these mixed data types. In this paper, our goal was to show how a clustering method that has not before been applied to understanding the human dimension of CHANS: a Gower dissimilarity matrix with partitioning around medoids (PAM) can be used to treat mixed-type human datasets. A case study of land managers responsible for invasive plant control projects across rivers of the southwestern U.S. was used to characterize managers’ backgrounds and decisions, and project properties through clustering. Results showed that managers could be classified as “federal multitaskers” or as “educated specialists”. Decisions were characterized by being either “quick and active” or “thorough and careful”. Project goals were either comprehensive with ecological goals or more limited in scope. This study shows that clustering with Gower and PAM can simplify the complex human dimension of this system, demonstrating the utility of this approach for systems frequently composed of mixed-type data such as CHANS. This clustering approach can be used to direct scientific recommendations towards homogeneous groups of managers and project types

    Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites

    Get PDF
    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species

    Patterns of predation and meat-eating by chacma baboons in an Afromontane environment

    Get PDF
    Meat-eating among non-human primates has been well documented but its prevalence among Afromontane baboons is understudied. In this study we report the predatory and meat-eating behaviours of a habituated group of gray-footed chacma baboons (Papio ursinus griseipes) living in an Afromontane environment in South Africa. We calculated a vertebrate-eating rate of 1 every 78.5 hours, increasing to 58.1 hours when unsuccessful predation attempts were included. A key food source was young antelopes, particularly bushbuck (Tragelaphus scriptus), which were consumed once every 115 observation hours. Similar to other baboon research sites, predations seemed mostly opportunistic, adult males regularly scrounged and monopolised prey, there was no evidence they used an active kill bite, and active sharing was absent. This is the first baboon study to report predation of rock python (Python sebae) eggs and likely scavenging of a leopard (Panthera pardus) kill (bushbuck) cached in a tree. We also describe several scramble kleptoparasitism events, tolerating active defence from antelope parents, and the baboons inhibiting public information about predations. In the latter case, baboons with meat often hid beyond the periphery of the group, reducing the likelihood of scrounging by competitors. This often led to prey carcasses being discarded without being fully exploited and potentially providing resources to scavengers. We also highlight the absence of encounters with numerous species, suggesting the baboons are a key component of several species’ landscapes of fear. Given these findings it seems likely that their ecological role in the Soutpansberg has been undervalued, and such conclusions may also hold for other baboon populations

    Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites

    Get PDF
    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species

    The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis

    Get PDF
    Background Antimicrobial resistance (AMR) is an urgent global health challenge and a critical threat to modern health care. Quantifying its burden in the WHO Region of the Americas has been elusive—despite the region’s long history of resistance surveillance. This study provides comprehensive estimates of AMR burden in the Americas to assess this growing health threat. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with AMR for 23 bacterial pathogens and 88 pathogen–drug combinations for countries in the WHO Region of the Americas in 2019. We obtained data from mortality registries, surveillance systems, hospital systems, systematic literature reviews, and other sources, and applied predictive statistical modelling to produce estimates of AMR burden for all countries in the Americas. Five broad components were the backbone of our approach: the number of deaths where infection had a role, the proportion of infectious deaths attributable to a given infectious syndrome, the proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of pathogens resistant to an antibiotic class, and the excess risk of mortality (or duration of an infection) associated with this resistance. We then used these components to estimate the disease burden by applying two counterfactual scenarios: deaths attributable to AMR (compared to an alternative scenario where resistant infections are replaced with susceptible ones), and deaths associated with AMR (compared to an alternative scenario where resistant infections would not occur at all). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. Findings We estimated 569,000 deaths (95% UI 406,000–771,000) associated with bacterial AMR and 141,000 deaths (99,900–196,000) attributable to bacterial AMR among the 35 countries in the WHO Region of the Americas in 2019. Lower respiratory and thorax infections, as a syndrome, were responsible for the largest fatal burden of AMR in the region, with 189,000 deaths (149,000–241,000) associated with resistance, followed by bloodstream infections (169,000 deaths [94,200–278,000]) and peritoneal/intra-abdominal infections (118,000 deaths [78,600–168,000]). The six leading pathogens (by order of number of deaths associated with resistance) were Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Together, these pathogens were responsible for 452,000 deaths (326,000–608,000) associated with AMR. Methicillin-resistant S. aureus predominated as the leading pathogen–drug combination in 34 countries for deaths attributable to AMR, while aminopenicillin-resistant E. coli was the leading pathogen–drug combination in 15 countries for deaths associated with AMR. Interpretation Given the burden across different countries, infectious syndromes, and pathogen–drug combinations, AMR represents a substantial health threat in the Americas. Countries with low access to antibiotics and basic health-care services often face the largest age-standardised mortality rates associated with and attributable to AMR in the region, implicating specific policy interventions. Evidence from this study can guide mitigation efforts that are tailored to the needs of each country in the region while informing decisions regarding funding and resource allocation. Multisectoral and joint cooperative efforts among countries will be a key to success in tackling AMR in the Americas.publishedVersio

    Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Get PDF
    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 Ă— 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 Ă— 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 Ă— 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology

    Measuring the availability of human resources for health and its relationship to universal health coverage for 204 countries and territories from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Human resources for health (HRH) include a range of occupations that aim to promote or improve human health. The UN Sustainable Development Goals (SDGs) and the WHO Health Workforce 2030 strategy have drawn attention to the importance of HRH for achieving policy priorities such as universal health coverage (UHC). Although previous research has found substantial global disparities in HRH, the absence of comparable cross-national estimates of existing workforces has hindered efforts to quantify workforce requirements to meet health system goals. We aimed to use comparable and standardised data sources to estimate HRH densities globally, and to examine the relationship between a subset of HRH cadres and UHC effective coverage performance. Methods: Through the International Labour Organization and Global Health Data Exchange databases, we identified 1404 country-years of data from labour force surveys and 69 country-years of census data, with detailed microdata on health-related employment. From the WHO National Health Workforce Accounts, we identified 2950 country-years of data. We mapped data from all occupational coding systems to the International Standard Classification of Occupations 1988 (ISCO-88), allowing for standardised estimation of densities for 16 categories of health workers across the full time series. Using data from 1990 to 2019 for 196 of 204 countries and territories, covering seven Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) super-regions and 21 regions, we applied spatiotemporal Gaussian process regression (ST-GPR) to model HRH densities from 1990 to 2019 for all countries and territories. We used stochastic frontier meta-regression to model the relationship between the UHC effective coverage index and densities for the four categories of health workers enumerated in SDG indicator 3.c.1 pertaining to HRH: physicians, nurses and midwives, dentistry personnel, and pharmaceutical personnel. We identified minimum workforce density thresholds required to meet a specified target of 80 out of 100 on the UHC effective coverage index, and quantified national shortages with respect to those minimum thresholds. Findings: We estimated that, in 2019, the world had 104·0 million (95% uncertainty interval 83·5–128·0) health workers, including 12·8 million (9·7–16·6) physicians, 29·8 million (23·3–37·7) nurses and midwives, 4·6 million (3·6–6·0) dentistry personnel, and 5·2 million (4·0–6·7) pharmaceutical personnel. We calculated a global physician density of 16·7 (12·6–21·6) per 10 000 population, and a nurse and midwife density of 38·6 (30·1–48·8) per 10 000 population. We found the GBD super-regions of sub-Saharan Africa, south Asia, and north Africa and the Middle East had the lowest HRH densities. To reach 80 out of 100 on the UHC effective coverage index, we estimated that, per 10 000 population, at least 20·7 physicians, 70·6 nurses and midwives, 8·2 dentistry personnel, and 9·4 pharmaceutical personnel would be needed. In total, the 2019 national health workforces fell short of these minimum thresholds by 6·4 million physicians, 30·6 million nurses and midwives, 3·3 million dentistry personnel, and 2·9 million pharmaceutical personnel. Interpretation: Considerable expansion of the world's health workforce is needed to achieve high levels of UHC effective coverage. The largest shortages are in low-income settings, highlighting the need for increased financing and coordination to train, employ, and retain human resources in the health sector. Actual HRH shortages might be larger than estimated because minimum thresholds for each cadre of health workers are benchmarked on health systems that most efficiently translate human resources into UHC attainment
    • …
    corecore