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Vegetation response to invasive Tamarix control in southwestern
U.S. rivers: a collaborative study including 416 sites
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Abstract. Most studies assessing vegetation response following control of invasive Tamarix
trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional
scale but with poor spatial-temporal replication, and most have not included testing the effects
of a now widely used biological control. We monitored plant composition following Tamarix
control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites
across six U.S. states. This represents the largest comprehensive assessment to date on the vege-
tation response to the four most common Zamarix control treatments. Biocontrol by a defoliat-
ing beetle (treatment 1) reduced the abundance of Tamarix less than active removal by
mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix
abundance also decreased with lower temperatures, higher precipitation, and follow-up treat-
ments for Tamarix resprouting. Native cover generally increased over time in active Tamarix
removal sites, however, the increases observed were small and was not consistently increased by
active revegetation. Overall, native cover was correlated to permanent stream flow, lower graz-
ing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity
also increased where Tamarix was removed. However, Tamarix treatments, especially those
generating the highest disturbance (burning and heavy machinery), also often promoted
secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in
treated than in reference sites, suggesting that management of southwestern U.S. rivers has
focused too much on weed control, overlooking restoration of fluvial processes that provide
habitat for hydrophytic and floodplain vegetation. These results can help inform future man-
agement of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native
biodiversity and reduce abundance of noxious species.

Key words:  Diorhabda; exotic species control; management of biological invasions; plant communities;
saltcedar; tamarisk.
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INTRODUCTION

Invasive, shrubby trees of the genus Tumarix (tamar-
isk, saltcedar) have become the second-most dominant
woody species along southwestern U.S. rivers since their
introduction from Eurasia in the early 1800s for orna-
mental purposes, windbreaks, and erosion control of
riverbanks (Di Tomaso 1998, Friedman et al. 2005).
Although Tamarix was naturalized and spreading along
some western U.S. rivers before the boom of civil engi-
neering in the 20th century (Birken and Cooper 2006),
its rapid expansion was partly facilitated by altered
hydro-geomorphic regimes of rivers caused by dam regu-
lation and exploitation of water resources (Stromberg
et al. 2007, Merritt and Poff 2010). Once established,
Tamarix can contribute further to riparian habitat
degradation, for example by increasing salinity in soils
(Merritt and Shafroth 2012, Ohrtman et al. 2012). By
occupying floodplain habitats, Tamarix can alter relative
abundances of native taxa of both plants and wildlife
(Shafroth et al. 2005, Bateman et al. 2013a), and is char-
acterized as both a passenger and driver of ecosystem
change (Johnson 2013).

Controlling invasive Tamarix has been a major prior-
ity of river management at the local, state, and federal
levels in the United States (Shafroth and Briggs
2008, Douglass et al. 2013). The main motivation for
Tamarix control for decades was “water salvage,”
although numerous studies now indicate that signifi-
cant, long-term, water salvage is unlikely to occur in
most Tamarix control situations (Nagler et al. 2010,
Cleverly 2013, Zavaleta 2013, McDonald et al. 2015).
Although water salvage is still a commonly stated
objective for Tumarix control, contemporary control
efforts frequently have a more holistic goal of improv-
ing the ecological value of riparian systems (Shafroth
et al. 2008, 2013, Sher 2013).

Decades of trials with a diversity of techniques to
remove Tamarix stands have resulted in effective reduc-
tions of >90% in Tamarix density and cover and even
total eradication at many sites across the Colorado
River and Middle Rio Grande catchments (Harms and
Hiebert 2006, Bay and Sher 2008, Belote et al. 2010,
Reynolds and Cooper 2011, Ostoja et al. 2014). These
approaches have used burning, mechanical removal with
heavy machinery, aerial application of herbicide, and a
popular technique consisting of cutting the tree with
hand or chain saws followed by herbicide application to
the stump (cut-stump method). However, these tradi-
tional, active removal techniques are labor-intensive,
costly, and difficult to apply in remote areas. Moreover,
they often involve localized disturbance with soil com-
paction, root disturbance, trampling, and unintended
removal of native vegetation (Hultine et al. 2010).
Because of these limitations, the tamarisk leaf beetle
Diorhabda spp., a biocontrol agent that could reduce
Tamarix populations with no further human interven-
tion, was released in 2001 (DeLoach et al. 2003).
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Since their release on the Sevier River, near Delta in
west central Utah, Diorhabda spp. have spread through-
out most of the southwestern U.S. rivers where Tamarix
is abundant (Tamarisk Coalition 2016). High mortalities
and canopy dieback of Tamarix following multiple years
of defoliation by the beetle have led to reductions in
cover of 50-90% in some locations (e.g., Humboldt and
Walker rivers [Pattison et al. 2011], Virgin River,
Nevada [Bateman et al. 2013b, Nagler et al. 2014, Hul-
tine et al. 2015], Colorado River, Colorado [Kennard
et al. 2016]). However, the few assessments of the effec-
tiveness of biocontrol in reducing Tamarix populations
have been very small-scale analyses (but see Nagler et al.
2012) without paired sites where active removal was
implemented. These sites showed extremely variable
stand-level tree mortalities that ranged from 0% to 56%
(Kennard et al. 2016) and little is known about the fac-
tors that explain this extreme variability (Hultine et al.
2015). Consequently, whether biocontrol represents an
effective alternative to active removal remains an open
question. Also, very little is known about how biocon-
trol interacts with active removal methods. For example,
Drus et al. (2014) showed that fire is more detrimental
to Tamarix in the presence of beetles. The effectiveness
of beetles as a new, natural, follow-up measure to avoid
Tamarix resprouting following mechanical removal
remains largely unstudied.

Of particular importance for the management of
Tamarix-infested ecosystems is not only assessing the
efficacy of methods for Tumarix control, but also the
effects of Tamarix removal on the recovery of plant com-
munities. Vegetation established following Tamarix
removal will strongly influence ecosystem functionality
(e.g., preservation of biodiversity, erosion control, wild-
life habitat, nutrient cycling, water use, flammability,
etc.; Shafroth et al. 2008). The reduction of Tamarix
cover often results in depauperate systems that remain
poorly vegetated and are often invaded by noxious, exo-
tic weeds (Harms and Hiebert 2006, Hultine et al. 2010,
Ostoja et al. 2014). In better situations, native vegeta-
tion, usually not strictly riparian as the local hydrology
is frequently not restored, may establish (Reynolds and
Cooper 2011). But in general, only slight improvements
in native species diversity, richness, and absolute cover
have been observed, with contrasting results among
functional groups (Harms and Hiebert 2006, Belote
et al. 2010, Ostoja et al. 2014). Most studies of vegeta-
tion recovery have been at the stream reach scale, or
when done regionally, poorly replicated in space and
time. As a result, little is known about the factors con-
trolling the responses of replacement vegetation follow-
ing Tamarix removal or mortality. Some factors, like
climate, may operate at very large spatial scales such as
the river catchment (Harms and Hiebert 2006, Bay and
Sher 2008). Moreover, to our knowledge, only two stud-
ies have reported plant community responses to biocon-
trol (Sher et al. 2015, Kennard et al. 2016). However,
both of these studies were limited to western Colorado
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(one of the first places where biocontrol beetles were
released), and thus their observations may have been dri-
ven by local factors and may not represent all rivers in
the southwestern U.S. region. Follow-up measures, such
as revegetation with native plants or chemical treatment
of secondary invasions by noxious weeds, are usually
part of Tamarix control projects but their effectiveness
has also rarely been systematically assessed (but see Bay
and Sher 2008, Sher et al. 2008).

For this collaborative study involving 16 research insti-
tutions, we compiled published and unpublished informa-
tion and collected new data on vegetation and associated
key environmental and management variables from 244
Tamarix control projects using the four most common
treatments: biocontrol, and mechanical removal by cut-
ting or heavy machinery, and burning. The goal was to
compare the relative effectiveness of biocontrol and tradi-
tional active removal techniques to reduce Tamarix abun-
dance and favor native riparian plant communities. This
comparison was done at a large scale and with enough
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spatiotemporal replication that we could account for vari-
ability observed between sites in the field and reported in
the literature. Key vegetation descriptors associated with
common goals of Tamarix control were used including
vascular plant species diversity, abundance of Tamarix,
native and exotic (non-noxious and noxious) species
abundance, and abundance of hydrophytic vegetation.

METHODS

Study sites

Vegetation composition after Tamarix treatment was
monitored in 244 sites on floodplains and riverbanks
along the main channel and minor and major tributaries
of two of the largest river catchments in the American
West: the Colorado River and the Rio Grande (Fig. 1).
The sites spanned ~350,000 km? across six U.S. states:
Arizona, California, Colorado, Nevada, New Mexico,
and Utah.
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Fic. 1. Colorado and Rio Grande catchments showing locations of 244 sites, where invasive Tamarix has been treated either by
active removal using burning, heavy machinery (heavy), hand or chain saws (cut), and by the action of the biocontrol agent, the
Tamarix beetle (Diorhabda sp.); 79 undesirable sites, representing a starting point for Tamarix control; and 93 desirable sites, repre-
senting an optimal outcome. The size of the pie charts is proportional to the number of projects at each river catchment (Colorado,
divided into upper and lower sub-catchments, and Rio Grande). Pie charts indicate the proportion of projects of each control type.

[Color figure can be viewed at wileyonlinelibrary.com|]
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For a site to be considered treated, it must have been
subjected to control of Taumarix by at least one of the fol-
lowing four methods, in decreasing order of disturbance:
prescribed or accidental burning of Tamarix stands
(“burning”), mechanical removal using heavy machinery
such as root plows, mowers, or bulldozers (“heavy
machinery”), mechanical removal by chain or hand saws

“cut”), and action of the biocontrol agent, Diorhabda
spp. (“biocontrol”). Sites that received more than one
control method were placed into the category with the
highest disturbance (i.e., burning > heavy machinery >
cut > biocontrol). Burning was considered as having the
greatest disturbance because it affects both chemical and
physical fluxes of nutrients in the ecosystem (Sher and
Hyatt 1999). Follow-up treatments to limit Tamarix
resprouting included (1) application of herbicide in any
of three forms (aerial, from the ground, and (or) locally
onto cut stumps), (2) root extraction (by default in all
“heavy machinery” sites, and manually using a fixed pul-
ley in the “cut” treatment), and (or) (3) defoliation by
Tamarix beetles (by default when present in the area).
Sites where aerial application of herbicide was the pri-
mary means of Tamarix control instead of a follow-up
measure were not considered in this study because there
were too few of this type for rigorous analysis. On-site
burning of Tamarix stems and debris stacked in piles
after removal was a common practice but not considered
as a burning or secondary treatment. Although Tamarix
was the focus of our study, the invasive tree Elaeagnus
angustifolia (Russian olive) was also usually removed if
found at the sites.

Tamarix treatments were sometimes completed with
other follow-up measures such as active revegetation of
native plants (usually pole planting or seeding) and (or)
chemical treatment of other noxious species. The actions
of these additional treatments could be applied simulta-
neously, later the same year, or in sequential steps over
several years, but homogeneously across the entire site.

Data were also compiled for both undesirable (79) and
desirable (93) reference sites. Both undesirable and desir-
able conditions were defined by each research institution
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within their independent research projects (Appendix S1:
Table S1). However, undesirable and desirable reference
sites across projects shared common characteristics.
Undesirable sites included conditions that represented a
starting point for treatments, either theoretically, i.e., a
nearby site with an abundance of Tamarix (36 sites), or
practically, i.e., the same site before Tamarix control (43
sites). The undesirable reference sites ranged from sparse,
small, Tamarix individuals in the sub-canopy of a
cottonwood forest to Tamarix monocultures. Desirable
reference sites included both regularly flooded early
successional communities and hydrologically discon-
nected areas in late stages of riparian succession, but all
were dominated by native species and had low abun-
dance of Tamarix (average of 3.7% cover).

Each site, treated or reference, corresponded to a sin-
gle geomorphic unit: a distinctive fluvial landform such
as a gravel or sand bar, flood deposit, channel margin,
abandoned channel, off-channel depression, floodplain
terrace, etc., and was geo-referenced (latitude and longi-
tude). Some sites were sampled in multiple years, making
a total of 800 “observations” (i.e., a site sampled at a
given year; Table 1). For the rare situation where more
than one treatment was applied and the treatment
applied later was a higher disturbance category than the
first, we treated data collected at these different time
points as if from separate sites. Likewise, pre-Tamarix
treatment observations (43 sites, “practical” undesirable
reference sites), were considered as separate sites from
post-Tamarix treatment observations for the purpose of
analysis.

Vegetation surveys

Vegetation composition in the 416 sites (244 Tamarix
treated sites, 79 undesirable reference and 93 desirable
reference sites) was collected for all species at a site using
measurements of cover, estimated visually in quadrats
within larger rectangular or circular plots, or by the line
intercept method along transects (Appendix Sl:
Table S1). We will collectively refer to these values as

TaBLE 1. Summary of sites and observations for treated, undesirable, and desirable reference sites.
Biocontrol Heavy Undesirable Desirable
Parameter only Cut machinery Burning  reference  reference  Total
Total number of sites 55 99 57 33 79 93 416
Total number of observations 72 219 95 78 134 202 800
Number of sites with only one observation 45 46 39 21 68 58 277
over time
Number of sites with two or more 10 53 18 12 11 35 139
observations over time
When two or more observations, median 3(2-3) 2 (2-5) 3(2-7) 5(2-9) 4 (3-11) 3(2-13) 3(2-11)
number and range (in parenthesis)
Time (yr) since end of Tamarix removal (time 7(1-9) 5(0-13) 3.5(0-18) 3(0-18) NA NA NA

since beetle arrival at biocontrol only sites)
at the last observation, median (range)

Note: NA indicates “not applicable.”
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species cover or species abundance (%), which are all
given in absolute terms. Overlapping layers of vegetation
within a single species were not considered in calculating
species abundance (e.g., tree seedlings and mature indi-
viduals) such that the maximum value for one species at
a given site was 100%. The abundance of plant groups,
for example of native species, however, could be higher
than 100%, as it resulted from the sum of species abun-
dances that could overlap.

Environmental variables

We collected information on 15 environmental vari-
ables that could play a role in determining the plant
community assemblies (Appendix S1: Table S2). Data
for each environmental variable was collected for each
site with the exception of grazing intensity, river metrics,
and soil metric variables, which had some sites with
missing information and thus were removed from analy-
ses as needed (Table 2):

1. Grazing intensity. The intensity of grazing by live-
stock was registered on a four-point semi-quanti-
tative scale based on interviews with land
managers and visual assessments of grazing activi-
ties (e.g., density of excrements; 0, none; 1, light;
2, moderate; 3, severe).

2. Stream flow permanence. We noted if the stream

flow was “permanent” or “intermittent” (with

“ephemeral” merged in the latter category).

River metrics. Aerial pictures and absolute eleva-

tion data taken from Google Earth were used to

calculate the river width (m), the shortest distance
from the center of the site to the margin of the

main channel (m), and the longitudinal slope (i.e.,

difference of elevation in the river from 500 m

upstream from the site to 500 m downstream

from the site, %,).

. Soil metrics. Composite samples were taken from
the soil surface to analyze salinity, pH, and tex-
ture of the fine fraction (<2 mm). Soil salinity
was determined as electrical conductivity of a
saturated soil paste. pH was determined using a
1:1 water solution. Percentage of sand (>63 pm)
in the fine fraction was used as a surrogate of
soil texture.

. Climate metrics. Precipitation and temperature
datasets were downloaded from the PRISM Cli-
mate Group website.'® For each site, we obtained
six variables: precipitation, maximum and mini-
mum monthly temperature during the growing
season (April-September), averaged for a period
of 30 yr (normal 1971-2000 if sampling was done
in 2005 or before; 1981-2010 for 2006 or later),
and for the year of survey.

3-5.

19 http://prismmap.nacse.org/nn/
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15. River valley shape. The river valley was analyzed
from visual inspections of aerial photos and classi-
fied as “confined” (i.e., in a canyon) or “unconfined”
(i.e., in a broad lowland area).

Key vegetation descriptors

As a first step, we calculated vegetation descriptors
that best represented the most common goals in Tamarix
control projects: reducing Tamarix, increasing the cover
and diversity of native species, controlling secondary
invasions of exotic species, and increasing cover of
hydrophytic or riparian wetland-type vegetation
(Shafroth et al. 2008). Hence, we calculated abundances
of (1) Tamarix, (2) native species, (3) other exotic (non-
noxious and noxious) species, and (4) hydrophytic spe-
cies for each treatment and type of reference site. The
choice of these first four vegetation descriptors (1-4)
was supported by a Principal Component Analysis
(PCA) performed on Hellinger-transformed (Legendre
and Gallagher 2001) species abundance that summarized
the variability of plant communities on a few axes (prin-
cipal components; Appendix S2). Other measures for
each treatment and type of reference site included (5)
Shannon’s diversity index as a measure of alpha diver-
sity and (6) beta diversity (sum of squared Hellinger’s
transformed distances of n sites of the same category
divided by n x [n — 1]) to represent heterogeneity. We
used the U.S. Department of Agriculture PLANTS
Database to determine the nativity, noxious, and hydro-
phytic character of all species (USDA-NRCS 2014; Data
S1). An exotic species was noxious if that was its legal
status in at least one of the six states where our study
sites were located. Bassia scoparia (common kochia) was
added to the list because it is listed as noxious species in
other U.S. states and was one of the most abundant spe-
cies in the database. Tamarix was not determined to the
species level but all Tamarix species are exotic and
classed as noxious in North America. Tamarix ramosis-
sima, T. chinensis, and their hybrids are the most com-
mon in southwestern U.S. rivers (Gaskin 2013), and it is
our understanding that these are the species included in
this study. However, in all cases we did not include
Tamarix in our calculations of non-noxious and noxious
exotic species, which we considered as a separate cate-
gory. Solanum elaeagnifolium is a native species but still
considered noxious as it can poison livestock and can be
invasive locally. Hydrophytic species are those that need
saturated soil conditions and were defined as those with
an obligate wetland (OBL, “almost always occur in wet-
lands”) or facultative wetland (FACW, “usually occur in
wetlands”) designation in the PLANTS Database for the
“Arid West” region (accessed on October 2014). We cre-
ated the category of hydrophytic species to act as an
indicator of low-lying, saturated areas of floodplains
usually associated with more geomorphically active flu-
vial landforms in contrast to disconnected, higher, and
drier floodplains (Corenblit et al. 2009, Merritt 2013).
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Data analysis

Initial effectiveness of removal methods.—We compared
the key vegetation descriptors at the last observation
(excluding beta-diversity) of each one of the four
treatments between them and against the reference con-
ditions using Mann-Whitney tests (P < 0.05) for all pair-
wise comparisons, after testing significant differences for
the six categories using Kruskal-Wallis tests (P < 0.05,
not shown).

Change over time.—We used two approaches to explore
vegetation changes over time. The first was to compare
the first and last observation at each treatment and ref-
erence type using the 139 sites that were sampled multi-
ple years (median 3-yr span, Table 1) for each of the key
vegetation descriptors using nonparametric Wilcoxon
matched pairs. Second, the effect of time since removal
(time since arrival of beetles in biocontrol sites) on the
four treatments was also explored using time-for-space
substitutions (i.e., chronosequences, for up to 18 yr since
treatment) in mixed models, with key vegetation descrip-
tors of the last observation at each site (log[x + 1]-trans-
formed except for Shannon diversity) as dependent
variables, time since removal as fixed effect and river
reach as random effect.

Environmental gradients.—As some of the sites were
pseudo-replicated, both temporally (i.e., some sites sam-
pled several years, Table 1) and spatially (high spatial
correlation in the vegetation and environmental variables
as indicated in preliminary analyses using Asymmetric
Eigenvector Maps, not shown), we used mixed models
with location as a random variable to assess the indepen-
dent role of environmental variables to explain key vege-
tation descriptors (excluding beta diversity, which was
calculated for each site type). Key vegetation descriptors
(log[x + 1]-transformed except for Shannon diversity) of
the last observation at each site were the response vari-
ables. Explanatory variables were the 15 environmental
data categories (fixed effects; Appendix S1: Table S2)
with 34 homogeneous river reaches (as indicated by
Asymmetric Eigenvector Maps, not shown) as a random
effect. We ran the models for each vegetation descriptor
and each environmental variable separately, while includ-
ing all the 416 sites, as we were not interested in the
specific response of each of the six site types (four treat-
ments and two references) to the environmental condi-
tions. Some models had n <416 where data on an
environmental variable were not available for a small
subset of sites (Table 2).

Effectiveness of follow-up actions.— Finally, we compared
the effectiveness of the different follow-up strategies for
treating Tamarix resprouts, promoting natives with revege-
tation (planting poles vs. seeding vs. not revegetation) and
controlling secondary invasions (application of herbicide
on noxious exotic species vs. not application) by using a
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battery of Mann-Whitney tests (P < 0.05) that compared
the abundance of Tamarix, native species, and noxious
exotic species at the last observations, respectively. For
Tamarix resprouting, treatments were analyzed separately.
For revegetation and control of secondary invasions, treat-
ments were merged because of the small sample size.

All the analyses were done with the packages vegan
(Oksanen et al. 2013) and nlme (Pinheiro et al. 2007) in
R. 3.4.2 (R Core Team 2016), and SPSS 13.0 (SPSS Inc.
Released 2005. SPSS for Windows, Version 16.0.
Chicago (Illinois), SPSS Inc).

REsuLTs

A total of 606 taxa, 485 of which are native, were iden-
tified, 516 to the species level, on the 416 sites (Data S1).
The total number of noxious species was 31 (excluding
Tamarix spp.). A total of 87 taxa were defined as hydro-
phytic (i.e., OBL or FACW; USDA-NRCS 2014). “Cut”
was the most frequent 7amarix control method (99
sites), followed by “heavy” (57), “biocontrol” (55), and
“burning” (33) (Table 1). Burning and heavy machinery
were more frequent than cutting in the Middle Rio
Grande, while biocontrol was more frequent in the
Upper Colorado, as beetles were released at several loca-
tions upstream from Lake Powell since 2001. Beetles
were not released to the Lower Colorado downstream
from Hoover Dam or to the Middle Rio Grande but nat-
urally dispersed to those locations as of ~2011 (Tamarisk
Coalition 2016; pie charts, Fig. 1).

Effectiveness of removal methods

The mean Shannon’s diversity index of all sites was
1.62 and was lowest in undesirable, biocontrol, and
burning and the highest in desirable sites and cut sites
(alpha-diversity, Table 3). Sites where Tamarix was cut
were also the most heterogeneous, as shown by beta-
diversity (Table 3). Shannon’s diversity index increased
when repeated observations over time were made in cut
and desirable sites and along the chronosequences of
biocontrol and burning sites (Table 3).

Tamarix abundance was greatly reduced by all treat-
ments to levels found in desirable sites, but more so by
the active removal methods (up to 90% reduction, burn-
ing, heavy, and cut) than by biocontrol only (~50%
reduction; Fig. 2a). Total eradication occurred in 38%
of the active removal projects (71 of 189), while in only
4% of the sites subjected to biocontrol only (2 of 55).

Native species increased over time in some but not all
types of removal sites as determined by chronosequence
analysis (biocontrol and burn sites) or the multiple
observation analysis (cut sites, arrows in Fig. 2b). Native
graminoids (i.e., grass and grass-like plants including
sedges [Cyperaceae] and rushes [Juncaceae]; USDA-
NRCS 2014) at the cutting (9.3%) and heavy machinery
(13.1%) treatments doubled and almost tripled the cover
found at undesirable condition sites (4.7%), respectively
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Mean + 1 SE of Shannon’s diversity index and beta diversity of plant community in the treated, undesirable and desirable reference sites, calculated from vegetation data collected

at the last observation at each site.

TABLE 3.

Desirable (n = 93)

Burning (n = 33)

Biocontrol only (n = 55) Cut (n = 99) Heavy machinery (n = 57)

Undesirable (n = 79)

Parameter

1.80* £ 0.06
(+0.08; Multiple observ.)

1.4654 + 0.11

(+0.04; Chrono.)

1.624%< 4+ 0.08

1.71%° + 0.06
(+0.12; Multiple observ.)

1.49%¢ + 0.09

(+0.09; Chrono.)

1.444 + 0.06
(—0.02; Multiple observ.)

Alpha-diversity (Shannon’s

diversity index)

Native

1.50 4+ 0.06
0.85 £ 0.06

0.74

1.11 + 0.11
0.09 + 0.51

1.25 4+ 0.08
0.84 + 0.07

0.72

1.40 £+ 0.06
0.77 £ 0.05

0.85

1.15 £+ 0.09
0.80 £ 0.07

1.20 £+ 0.07
0.60 + 0.06

0.52

Exotic

0.77

0.63

Beta-diversity on
Hellinger basist
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Notes: Values are mean + SE. Letters following mean values indicate homogeneous groups after Mann-Whitney tests (P < 0.05). For each treatment, the yearly increase or decrease over

time along time series (Multiple observ., Wilcoxon tests) or using space-for-time substitutions (Chrono., mixed models) is indicated when significant (P < 0.05).

TRanging from 0 (maximum similarity) to 1 (maximum dissimilarity).
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main species: Carex spp. [sedges], Distichlis spicata [salt-
grass], Muhlenbergia asperifolia [scratchgrass], and
Sporobolus cryptandrus [sand dropseed]; Data S1).
Native forbs (i.e., all non-graminoid herbs; USDA-
NRCS 2014) did not show a great response to any
treatment (main species: Isocoma acradenia [Alkali
goldenbush], Anemopsis californica [yerba mansa]; the
two not geographically widespread; Data S1). Yet despite
these gains, mean native species abundance was not sig-
nificantly different than undesirable reference sites in
three of the treatment methods and, for burn sites, it was
significantly less (Fig. 2b). However, this was partly due
to a lower abundance of native shrubs and trees (Populus
spp. [cottonwoods], Salix spp. [willows], Baccharis spp.
[false willows], and Forestiera pubescens [New Mexican
privet], being the most representative; Data S1) in all
treatments other than heavy machinery (Mann-Whitney
tests, not shown), and also because the mean number of
years post removal was only five.

The abundance of non-noxious exotic species was very
low (<7% abundance, Fig. 2c) at all site types, with gra-
minoids (main species: Polypogon monspeliensis [annual
rabbitsfoot grass], P. viridis [beardless rabbitsfoot grass])
and forbs being the most frequently present plant
groups (main species: Melilotus alba [sweetclover] and
Chenopodium album [lambsquarters]). Non-noxious exo-
tic species decreased in the time series of undesirable sites.

Noxious weeds decreased in biocontrol sites but
increased in cut sites, when observed over multiple years.
Noxious exotic species, however, were much more abun-
dant than non-noxious. Their highest absolute abun-
dance occurred when applying the highest disturbance
techniques (burning and, especially, heavy machinery),
but this was mainly due to a 12x (burning) to 16x
(heavy machinery) increase in abundance of noxious
forbs (mainly Acroptilon repens [Russian knapweed],
Bassia scoparia [common kochia], and Salsola tragus s.1.
[Russian thistle]; Data S1; Fig. 2d). Noxious graminoids
(mainly Bromus tectorum [cheatgrass], B. rubens [red
brome], and B. diandrus [ripgut brome]; Data S1) kept
the same cover or even decreased (e.g., from 8.4% in the
undesirable conditions to 0.7% in the burning treat-
ment). Noxious shrubs and trees other than Tamarix
(mainly Elaeagnus angustifolia [Russian olive]; Data S1)
were almost eradicated from the treated sites.

Desirable sites had a much higher abundance of
hydrophytic species (Salix exigua [coyote willow], Phrag-
mites australis [common reed], Phalaris arundinacea
[reed canarygrass], Muhlenbergia asperifolia [scratch-
grass], Carex sp. [sedges], and Pluchea sericea
[arrowweed] being the most representative, in decreasing
order of cover; Data S1) than all the other site types
(hydrophytic species, Fig. 2e). Only a few hydrophytic
species were exotic, but non-noxious and never dominat-
ing (Agrostis gigantea, Atriplex patula, Echinochloa
crus-galli, and several species of Polygonum; Data S1).
Over time, hydrophytic species only changed in burned
sites (increasing along the chronosequence).
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(a) Tamarix, (b) native, (c) non-noxious exotic, (d) noxious exotic, and (e) hydrophytic species abundance (mean and

SE) in the treated, undesirable, and desirable reference sites, calculated from vegetation data collected at the last observation at each
site. The same letters above bars indicate homogeneous groups after Mann-Whitney tests (P < 0.05). For each treatment, arrows
pointing upward indicate an increase over time along repeated sampling in a subset of sites (Multiple observ., Wilcoxon tests;
Table 1) or using space-for-time substitutions (Chrono., mixed models; P < 0.05). Arrows pointing downwards indicate a temporal
decrease. The numbers above the columns indicate the yearly percentage of increase or decrease, averaged per site. See Methods for
definitions and calculations of plant groups. The x-axis abbreviations in panels a—d are spelled out in panel e.
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Heavy (n = 57) Burning (n = 33)
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Tamarix abundance (mean and SE) for several follow-up methods to limit 7amarix resprouting following three active

methods of initial Tamarix removal (Cut, cut-stump method; Heavy, using heavy machinery; Burning, prescribed or accidental
burning) at the last year of observation for each site. Bars with the same letters indicate homogeneous groups after Mann-Whitney
tests (P < 0.05). There is no follow-up in the biocontrol treatment and therefore is not shown.

Environmental gradients

Overall, higher aridity represented by higher tempera-
tures and lower precipitation, intermittent reaches, and
higher soil salinity favored Tamarix cover over diversity
and cover of both native and hydrophytic species (envi-
ronmental gradients, Table 2). Noxious weeds were more
commonly found at colder sites, and at low-energy
reaches represented by a smaller percentage of sand in
the fine soil fraction and lower longitudinal slopes.

Effectiveness of follow-up actions

Tamarix abundance differed more among follow-up
strategies to limit 7amarix resprouting than among initial
removal methods (i.e., cut, heavy machinery, burning)
and, overall, the follow-up of Tamarix resprouting resulted
in greater control than no follow-up. The manual removal
of the whole individual by using a fixed pulley after cut-
ting was remarkably successful, attaining local eradication
(Cut, Fig. 3). The application of herbicide was especially
effective after cutting (cut-stump method and herbicide
spraying of resprouts from the ground; Cut, Fig. 3) and
when using heavy machinery (especially if applied aeri-
ally), regardless of the beetle presence (Heavy, Fig. 3).
However, the application of herbicide was not as impor-
tant to limit resprouting in burning sites (Burning, Fig. 3).
Revegetation, either by pole planting or seeding, did not
result in a higher abundance of native species (Fig. 4).
Similarly, application of herbicides on noxious weeds did
not result in a lower abundance by these species (Fig. 5).

DiscussioN

Tamarix is more effectively reduced by active
removal than by biocontrol
All methods used to control Tamarix invasion ana-

lyzed in this article reduced ZTamarix abundance com-
pared to that at undesirable reference conditions, often

reaching local eradication when active removal (cut,
heavy machinery, and burning) was carried out. This
conclusion supports observations of >90% decrease in
Tamarix density and cover (Appendix S1: Table SI;
Harms and Hiebert 2006, Belote et al. 2010, Reynolds
and Cooper 2011, Ostoja et al. 2014). Our results also
corroborate recent findings that although far from

Revegetation
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Fic. 4. Abundance of native species (mean and SE) for two
revegetation methods: pole planting, mostly cottonwood (30
sites), and seeding of native plants mixtures (24 sites), at the last
year of observation for each site. “No” means no revegetation
(190 sites). Bars with the same letters indicate homogeneous
groups after Mann-Whitney tests (P < 0.05).
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Fic. 5. Abundance of noxious weeds (mean and SE) after
chemical treatment aiming at controlling secondary invasions
(Yes, 56 sites), at the last year of observation for each site.
No, no chemical treatment on noxious weeds (147 sites);
Unknown, no information available on chemical treatment on
noxious weeds (41 sites). Bars with same letters indicate homo-
geneous groups after Mann-Whitney tests (P < 0.05).
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eradication and less effective than active removal
methods, biocontrol has reduced Tamarix cover by at
least 50% in most regions in just one decade (Pattison
et al. 2011, Hultine et al. 2015, Kennard et al. 2016).

The differences in 7amarix abundance between active
removal treatments and biocontrol did not decrease over
time with repeated defoliations by the beetles. In fact, we
did not find any significant changes in Zamarix abun-
dance in the sites repeatedly sampled over time nor in
the chronosequences of any of the four treatments. For
the active removal treatments, being discrete in time, we
interpret the lack of changes over time as a result of fol-
low-up actions being effective in controlling resprouting.
For biocontrol, other studies showed that the bulk of
defoliation normally occurs during the first few years
after the arrival of beetles and stabilizes afterwards
(Hultine et al. 2010, Kennard et al. 2016). Given that
initial beetle introduction to most of our biocontrol sites
occurred up to 4 yr prior to sampling, it is possible that
the most dramatic defoliation periods are not repre-
sented in our data set. Regardless of the limitations of
the experimental design in detecting temporal changes,
time may be less important than initially expected in
explaining differences in Tumarix cover between treat-
ments at such a large spatial scale. Hultine et al. (2015)
suggested that defoliation-induced canopy dieback in
Tamarix could be more dependent on abiotic and biotic
factors operating across broad spatial gradients than to
the number of defoliation events (expressed as time since
arrival of beetles in our study) that ranged from two to
seven in their study. Consistent with Hultine et al.
(2015), we found that environmental gradients reflecting
climatic aridity and follow-up strategies to limit
resprouting had a greater power in explaining Tamarix
abundance than the number of defoliations. McShane
et al. (2015) also found that higher temperatures were
associated with a greater abundance of Tamarix at a
continental scale.

Native species benefit slightly from all methods
of Tamarix control

The effective removal and defoliation of Tamarix led to
an enhancement of native plant species but only to a
small degree (by a range of 1.5%, biocontrol and burning,
to 1.9%, cut yearly). Thus given the short amount of time
elapsed since removal in most of the sites, we observed no
significant difference overall in native cover between
treatment sites and untreated reference sites. Consistent
with published results (Harms and Hiebert 2006, Belote
et al. 2010, Reynolds and Cooper 2011, Ostoja et al.
2014; Appendix S1: Table S1), we found higher diversity
of natives and a slightly higher abundance of native gra-
minoids in the cutting and heavy machinery treatments.
These results suggest that Tamarix decline released
natives from competitive pressure, for example, native
graminoid growth may have been stimulated by increased
light, but it is important to note that this has not

EFFECTS OF TAMARIX CONTROL ON VEGETATION

1799

translated into dramatically more successful establish-
ment and growth of native species.

Several reasons may underlie this. First, most sites
were surveyed fewer than 5 yr post Tumarix removal;
previous research suggests that significant plant commu-
nity recovery may not be detected until 7 yr or more
have elapsed (Bay and Sher 2008). Also, as suggested by
Ostoja et al. (2014), disturbance created during Tamarix
control, especially by methods with high disturbance,
may have removed native species as well as exotics, for
example, Salix gooddingii confused with Elaeagnus
angustifolia (K. Eichhorst, personal field observations)
and, by burying and damaging the seed banks, reduced
the capacity of new native individuals to colonize the
restored sites. In fact, our data suggest that native woody
plant abundance may have decreased following Tamarix
removal, even though this may also be an artifact caused
by not having pre-removal data for most of the treated
sites. Second, treatment of Tumarix does not necessarily
exert any positive influence on many of the abiotic fac-
tors identified in our study as drivers of natives (e.g.,
atmospheric precipitation is not affected by Tumarix
removal) and might have had a negative or uncertain
influence on others. For example, loss of Tamarix cover
may lead to excessive temperatures and higher evapora-
tion in soils (Sher et al. 2008), and therefore higher soil
salinity (Ohrtman et al. 2012) and may also represent an
easier access to the sites by grazing livestock (Sher
2013), all situations seeming to disfavor natives
(Rowland et al. 2004). Other legacies of long-term
Tamarix domination may have limited reestablishment
of natives. For example, chemical components in the
soils may inhibit germination (e.g., salt accumulation;
Ohrtman et al. 2012, Merritt and Shafroth 2012); and
impoverished microbial communities may hamper
growth and performance of native plants (Corbin and
D’Antonio 2012). Poorer than expected recovery of
native plant communities has been also reported in other
riparian systems following removal of exotic trees, which
may have reduced ecosystem resilience after decades of
invasion (e.g., Acacia and Eucalyptus spp. in riparian
areas of the South African Fynbos Biome [Blanchard
and Holmes 2008], Ligustrum sinense [Chinese privet] in
the Oconee River, Georgia, USA [Hudson et al. 2014]).
Finally, as we believed was the case for Tamarix abun-
dance, environmental gradients might be outweighing
the effects of time in explaining differences in abundance
of native species between sites at the large spatial scale
considered in this study.

Perhaps surprisingly, active revegetation did not result
in a higher cover by native species. This could simply
reflect the fact that the most degraded sites were the most
likely to be actively revegetated. Other possibilities
include: high mortality of planted poles of cottonwoods
in regulated floodplains, especially when access to
groundwater is not guaranteed (Briggs et al. 1994,
Stromberg 2001), sown seeds may not germinate in suffi-
cient numbers (Dela Cruz et al. 2014), density of plants
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established as a result of revegetation is too low to
strongly influence the plant community (Orr and Koenig
20006), or that the positive effects of active plant introduc-
tion are only visible at long time frames. Bourgeois et al.
(2016), for example, showed that planted trees in riparian
buffer strips only have an effect on the understory layer
after 12-13 yr, when they develop a sufficiently dense
canopy to shade out light demanding species. Bay and
Sher (2008) detected an age threshold of 9 yr for
improved cover by planted species and also showed that
local hydrology and climatic factors were very important
to revegetation success. Limiting grazing, improving
access to groundwater, and selecting species adapted to
local climatic and environmental constraints could
improve the outcomes of revegetation and promote a fas-
ter recovery and dominance of native species (Briggs
et al. 1994, Shafroth et al. 2008).

Tamarix control may induce secondary invasions of
noxious forbs, especially following high treatment-related
disturbance

While the peak of available resources following
Tamarix decline was not fully exploited by native species,
noxious exotic species frequently increased in abun-
dance, especially if removal was done using high distur-
bance methods such as heavy machinery and burning.
These observations would support the hypothesis that
disturbance in a broad sense can induce plant invasions
(Hobbs and Huenneke 1992, Sher and Hyatt 1999, Davis
et al. 2000, Kreyling et al. 2008). Similar findings have
been reported in riparian zones of other world regions.
For example, a poor recovery of the native plant commu-
nity, followed by secondary invasions of noxious weeds
after removal of invasive Acacia and Eucalyptus spp. by
burning occurred in South African riparian systems
(Blanchard and Holmes 2008). However, Tamarix
control did not affect all functional groups of noxious
exotics equally. Graminoids (mainly annual Bromus spp.)
were the most abundant noxious exotics in undesirable
reference conditions, and did not increase after human
intervention, even decreasing in the burning treatment.
Dela Cruz et al. (2014) showed that burning was an effec-
tive treatment to control invasive Bromus spp. in riparian
zones of the Virgin River in Zion National Park (Utah,
USA). Noxious shrubs and trees, notably E. angustifolia,
were rarely found in the treated sites, despite being abun-
dant in Tumarix-infested sites, as they were generally
removed in all treatments but biocontrol.

The three most aggressive secondary invasions were
caused by noxious exotic forb species. Two of them,
Bassia scoparia and Salsola tragus plants, are tumble-
weeds, prolific seed producers having efficient wind-
mediated seed dispersal (Baker et al. 2008, Friesen et al.
2009). They may be greatly favored by the opening of
safe sites for recruitment that immediately follows soil
disturbance and removal of competing vegetation
caused by heavy machinery or burning. The third most
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frequent noxious weed, Acroptilon repens, is a perennial,
persistent forb that can expand vigorously by spreading
rhizomes, especially following openings in the canopy
layer as it is a light-demanding species (Jacobs and
Denny 2006, Sherry et al. 2016).

Surprisingly, secondary invasions worsened over time
in the cutting treatment and declined only in the 10 bio-
control sites repeatedly monitored over time. The condi-
tions that caused site degradation and Tamarix
infestation may persist after removal and continuously
favor weeds, which have functional traits typical of rud-
eral and stress-tolerant strategies, similarly to Tamarix
(Glenn and Nagler 2005). For example, Tamarix sites
usually lack mycorrhizal fungi and most weed species
are non-mycorrhizal species (Shafroth et al. 2008).
Another reason to explain the persistence of noxious
weeds over time is that floodplains and river banks are
inherently high disturbance systems, often leading to
weedy plant invasions (Planty-Tabacchi et al. 1996,
Richardson et al. 2007). Long-term monitoring of the
treated sites is suggested to assess whether more time will
reverse the observed trends (Pearson et al. 2016).

Also unexpectedly, noxious weeds were more abundant
in sites where herbicides were applied on herbaceous
(non-tamarisk) weeds as part of follow-up treatments. As
was the case for revegetation follow-up, a higher abun-
dance of weeds following herbicide application could
simply result from herbicides being only applied when
noxious weeds had colonized the sites. Unfortunately,
other limitations in the database hampered further inves-
tigation: for example, before-after information on fol-
low-up measures to control secondary invasions was
only available for eight sites, and repeated observations
over time once herbicides were applied existed for 16 sites
only (with no significant decrease of weeds over time,
Wilcoxon test between first and last observation,
P < 0.05). Limitations of the database notwithstanding,
herbicides may also be less effective than initially
intended. Species such as B. scoparia and S. tragus, for
example, have developed resistance to commonly used
herbicides such as imazapyr and glyphosate, hampering
their reduction and eradication (Primiani et al. 1990,
Chodova and Mikulka 2000, Shafroth et al. 2013). Her-
bicides may also negatively affect germination of native
species (Dela Cruz et al. 2014, Douglass et al. 2016).

Treatments provided no significant enhancement
of fluvial processes represented by the abundance
of hydrophytic species

Many reaches and tributaries of both the Colorado
River and Rio Grande are highly regulated by dams and
levees (Merritt and Poff 2010). With flooding-related
disturbance and channel migration severely limited, key
fluvial processes such as erosion and sedimentation, nec-
essary to create the heterogeneity of habitats typical of
healthy riparian zones and floodplains, are severely
impaired (Merritt and Cooper 2000, Johnson 2002, Graf
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2006). Regulated floodplains tend to experience vertical
and lateral accretion of sediments or channelization and
down-cutting, both of which can lead to disconnecting
the river from its former floodplain and a resulting “ter-
restrialization” of plant communities (i.e., replacement
of riparian and wetland with dryland species; Johnson
2002, Dixon et al. 2012, Reynolds et al. 2013). Tamarix
removal and defoliation did not seem to enhance erosion
and rejuvenation of fluvial landforms, which would have
presumably been colonized by hydrophytic species with
more preference for shallow groundwater and saturated
soils, typical of early stages of riparian succession
(Corenblit et al. 2009, Merritt 2013). Jaeger and Wohl
(2011) reported that stream channels in the Canyon de
Chelly National Monument (Arizona) kept an
entrenched morphology following Tamarix and Russian
olive removal. There, Reynolds and Cooper (2011) noted
that the species that recolonized the sites cleared of
Tamarix were mainly upland species, not early succes-
sional riparian. Conversely, Vincent et al. (2009)
reported extensive erosion and channel widening follow-
ing Tamarix removal in a small stream of New Mexico
(Rio Puerco), but did not look at the colonizing vegeta-
tion that resulted from those processes.

In our study, all treatments and undesirable reference
sites had a much lower abundance of hydrophytic spe-
cies compared to desirable sites. Overbank flooding and
channel morphology was only improved in a few study
sites as part of the control works (e.g., lowering flood-
plain at “Crawford” site; Rio Grande, Eichhorst K,
Appendix S1: Table S1) or responded spontaneously as
a result of Tamarix removal (e.g., enhancement of
sandbar erosion at sites located in Dinosaur National
Monument; Green River, Gonzilez E, Appendix S1:
Table S1). There, hydrophytic species were responsive to
restoration of local fluvial processes and dominated the
treated sites.

Furthermore, reductions in Tamarix cover without pro-
portionally large increases in understory cover of all types
have broad ecological and environmental implications,
including water use via evapotranspiration (Shafroth
et al. 2005, Zavaleta 2013). Although significant water
savings seems unlikely, recent research on the impacts of
the biological control beetle suggest that reductions in
evapotranspiration are, in fact occurring in the first few
years following control (Pattison et al. 2011, Nagler et al.
2014, Sueki et al. 2015, Liebert et al. 2016). We detected
much more dramatic reductions in Tamarix cover by
active means, relative to biological control. Regardless,
the extent of reduction in water use resulting from
Tamarix control by any method is expected to be a func-
tion of local climate, water availability, the pre-
existing, and the replacement vegetation (Bloodworth
et al. 2016). Because water use by hydrophytic native trees
is comparable to that of Z7amarix (Nagler et al. 2009,
Cleverly 2013), if there is proportionally great recovery of
those after Tumarix removal, it is unlikely that there will
be water salvaged. However, the slow recovery of
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hydrophytic species we observed, in addition to the slow
recovery of native plants in general, suggests that the dra-
matic decreases in Tamarix cover documented here
should have some net reductions in evapotranspiration.
This does not exclude the possibility that in the future,
once full recovery of vegetation has occurred, water use
returns to pre-Tamarix control levels. Removal of
Tamarix also has important implications for wildlife; pre-
vious research has shown that some species benefit, while
other birds, mammals, and herpetofauna that have come
to use Tamarix are negatively affected (Bateman et al.
2013a). Native species replacement will mitigate most if
not all negative effects, as native wildlife should have the
capacity to return to using those plants and trees they
have evolved with. However, the slow rate of recovery
observed in this study suggests that at least in the short
term we should expect some negative effects to wildlife.

Current Tumarix control projects rarely address the
main causes of river degradation (Stromberg 2001, Sher
2013), and therefore the reactivation of fluvial processes
leading to the rejuvenation of fluvial landforms, repre-
sented here by the establishment of hydrophytic vegeta-
tion, is not expected. Increasing site flooding may also
be necessary to promote geomorphic change and germi-
nation of seeds of species that are not strictly hydrophy-
tic, native species (Reynolds and Cooper 2011, Ostoja
et al. 2014). However, both native and hydrophytic spe-
cies were as (if not more) dependent on environmental
gradients (e.g., grazing pressure, distance to water chan-
nel, climatic) as on Tumarix removal methods. Research
has found that, if fluvial conditions are appropriate,
native species are competitive with 7amarix without any
direct intervention (Stromberg 1997, Sher et al. 2002,
Sher and Marshall 2003). A comprehensive management
approach for southwestern U.S. rivers that not only
focuses on weed control but also on the restoration of
the local fluvial processes is challenging in the context of
growing human pressure on water resources and climate
change (Stromberg 2001, Tockner and Stanford 2002,
Palmer et al. 2008, Perry et al. 2015) but should be con-
sidered wherever possible.
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