330 research outputs found

    The Struggle for Zimbabwe: Battle in the Bush

    Get PDF

    Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE)

    Get PDF
    A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decisionsupport model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4–0.7 PE), acidification (–0.06 (saving)–1.6 PE), nutrient enrichment (–1.0 (saving)–3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment

    Magnetic fields in cluster cores: Faraday rotation in A400 and A2634

    Full text link
    We present Faraday rotation data for radio sources in the centers of the Abell clusters A400 and A2634. These clusters contain large (> 100 kpc), tailed radio sources, each attached to the central cD galaxy. These clusters do not have strong cooling cores. Our data extend previous work on rotation measure in cluster centers to larger scales and non-cooling clusters. The rotation measure, and thus the magnetic field, is ordered on scales 10-20 kpc in both clusters. The geometry of the rotation measure appears to be determined by the distribution of the X-ray emitting gas, rather than by the radio tails themselves. We combine our data with previously published X-ray and radio data in order to analyze the magnetic fields in all 12 clusters whose central radio sources have been imaged in rotation measure. We find that the fields are dynamically significant in most clusters. We argue that the Faraday data measure fields in the intracluster medium, rather than in a skin of the radio source. Finally, we consider the nature and maintenance of the magnetic fields in these clusters, and conclude that either the cluster-wide field exists at similar levels, or that a weaker cluster-wide field is amplified by effects in the core.Comment: Accepted for ApJ. 43 pages including 10 embedded figures. Higher resolution versions of the figures available at http://www.aoc.nrao.edu/~jeilek/pubs/Eilekpub.htm

    Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

    Get PDF
    The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the "antibiotic era". Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases

    The Impact of Oral Health on Taste Ability in Acutely Hospitalized Elderly

    Get PDF
    Objective: To investigate to what extent various oral health variables are associated with taste ability in acutely hospitalized elderly. Background: Impaired taste may contribute to weight loss in elderly. Many frail elderly have poor oral health characterized by caries, poor oral hygiene, and dry mouth. However, the possible influence of such factors on taste ability in acutely hospitalized elderly has not been investigated. Materials and Methods: The study was cross-sectional. A total of 174 (55 men) acutely hospitalized elderly, coming from their own homes and with adequate cognitive function, were included. Dental status, decayed teeth, oral bacteria, oral hygiene, dry mouth and tongue changes were recorded. Growth of oral bacteria was assessed with CRTH Bacteria Kit. Taste ability was evaluated with 16 taste strips impregnated with sweet, sour, salty and bitter taste solutions in 4 concentrations each. Correct identification was given score 1, and maximum total taste score was 16. Results: Mean age was 84 yrs. (range 70–103 yrs.). Total taste score was significantly and markedly reduced in patients with decayed teeth, poor oral hygiene, high growth of oral bacteria and dry mouth. Sweet and salty taste were particularly impaired in patients with dry mouth. Sour taste was impaired in patients with high growth of oral bacteria. Conclusion: This study shows that taste ability was reduced in acutely hospitalized elderly with caries activity, high growt

    Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET):feasibility of a new imaging concept using a clinical PET/MRI scanner

    Get PDF
    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO(2) ((13)C-HCO(3)) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high (13)C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly can be demonstrated by hyperpolarized (13)C-pyruvate MRSI. This was not possible with (18)F-FDG-PET imaging due to inability to discriminate between causes of increased glucose uptake. We propose that this new concept of simultaneous hyperpolarized (13)C-pyruvate MRSI and PET may be highly valuable for image-based non-invasive phenotyping of tumors. This methods may be useful for treatment planning and therapy monitoring

    Two fossil groups of galaxies at z~0.4 in the COSMOS: accelerated stellar-mass build-up, different progenitors

    Get PDF
    We report on 2 fossil groups of galaxies at z=0.425 and 0.372 discovered in the Cosmic Evolution Survey (COSMOS) area. Selected as X-ray extended sources, they have total masses (M_200) of 1.9(+/-0.41)E13 and 9.5(+/-0.42)E13 M_sun, respectively, as obtained from a recent X-ray luminosity-mass scaling relation. The lower mass system appears isolated, whereas the other sits in a well-known large-scale structure (LSS) populated by 27 other X-ray emitting groups. The identification as fossil is based on the i-band photometry of all the galaxies with a photo-z consistent with that of the group at the 2-sigma confidence level and within a projected group-centric distance equal to 0.5R_200, and i_AB<=22.5-mag limited spectroscopy. Both fossil groups exhibit high stellar-to-total mass ratios compared to all the X-ray selected groups of similar mass at 0.3<=z<=0.5 in the COSMOS. At variance with the composite galaxy stellar mass functions (GSMFs) of similarly massive systems, both fossil group GSMFs are dominated by passively evolving galaxies down to M^stars~1E10 M_sun (according to the galaxy broad-band spectral energy distributions). The relative lack of star-forming galaxies with 1E10<=M^stars<=1E11 M_sun is confirmed by the galaxy distribution in the b-r vs i color-magnitude diagram. Hence, the 2 fossil groups appear as more mature than the coeval, similarly massive groups. Their overall star formation activity ended rapidly after an accelerated build up of the total stellar mass; no significant infall of galaxies with M^stars>=1E10 M_sun took place in the last 3 to 6 Gyr. This similarity holds although the 2 fossil groups are embedded in two very different density environments of the LSS, which suggests that their galaxy populations were shaped by processes that do not depend on the LSS. However, their progenitors may do so. ...Comment: 12 pages, 5 color figures, 1 table; to be published in the MNRA

    Prey detection and prey capture in copepod nauplii

    Get PDF
    Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae) and by the nauplii of one feeding-current feeding species (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey
    • …
    corecore