118 research outputs found

    Occurrence and fate of antimony in plastics

    Get PDF
    Antimony (Sb) is a technology critical element whose presence is ubiquitous in manufactured products, and in particular in plastics where it is used extensively as a flame retardant synergist for brominated compounds, as a catalyst for polyethylene terephthalate production, and as a pigment for colour. This study reviews the usage, regulations and fate of Sb in plastics by examining primary data on its production, applications, contents in and migration from manufactured objects, and presence in and release from waste, including the disposal and recycling routes for this material (i.e., non-controlled disposal, incineration, landfilling and recycling). Consumption of Sb and the relative apportioning of the metalloid between different uses in plastics change continuously and are largely driven by dynamic economic factors; accordingly, reference to secondary data or sources can be misleading. Since Sb is not recovered from plastics, its fate is entirely linked to the fate of plastics themselves which, as far as disposal and recycling are concerned, might be dictated by the presence of co-associated regulated substances such as brominated flame retardants. Significantly, because of the high leachability of Sb from bottom incineration ashes, the EU considers the metalloid as the most problematic substance regarding the potential reuse of this material

    Loss of the Wnt/β-catenin pathway in microglia of the developing brain drives pro-inflammatory activation leading to white matter injury

    Get PDF
    Microglia-mediated neuroinflammation is key in numerous brain diseases including encephalopathy of the preterm born infant. Microglia of the still-developing brain have unique properties but little is known of how they regulate their inflammatory activation. This is important information as every year 9 million preterm born infants acquire persisting neurological injuries associated with encephalopathy and we lack strategies to prevent and treat these injuries. Our study of activation state regulators in immature brain microglia found a robust down-regulation of Wnt/β-catenin pathway receptors, ligands and intracellular signalling members in pro-inflammatory microglia. We undertook our studies initially in a mouse model of microglia-mediated encephalopathy including the clinical hallmarks of oligodendrocyte injury and hypomyelination. We purified microglia from this model and applied a genome-wide transcriptomics analysis validated with quantitative profiling. We then verified that down-regulation of the Wnt/β-catenin signalling cascade is sufficient and necessary to drive microglia into an oligodendrocyte-damaging phenotype using multiple pharmacological and genetic approaches in vitro and in vivo in mice and in humans and zebrafish. We also demonstrated that genomic variance in the WNT/β-catenin pathway is associated with the anatomical connectivity phenotype of the human preterm born infant. This integrated analysis of genomics and connectivity, as a surrogate for oligodendrocyte function/myelination, is agnostic to cell type. However, this data indicates that the WNT pathway is relevant to human brain injury and specifically that WNT variants may be useful clinically for injury stratification and prognosis. Finally, we performed a translational experiment using a BBB penetrant microglia-specific targeting 3DNA nanocarrier to deliver a Wnt agonist specifically and directly to microglia in vivo. Increasing the activity of the Wnt/β-catenin pathway specifically in microglia in our model of microglia-mediated encephalopathy was able to reduce microglial pro-inflammatory activation, prevent the typical hypomyelination and also prevent the long-term memory deficit associated with this hypomyelination. In summary, the canonical Wnt/β-catenin pathway regulates microglial activation and up-regulation of this pathway could be a viable neurotherapeutic strategy

    11β-Hydroxysteroid Dehydrogenase-1 Is a Novel Regulator of Skin Homeostasis and a Candidate Target for Promoting Tissue Repair

    Get PDF
    11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the interconversion of cortisone and cortisol within the endoplasmic reticulum. 11β-HSD1 is expressed widely, most notably in the liver, adipose tissue, and central nervous system. It has been studied intensely over the last 10 years because its activity is reported to be increased in visceral adipose tissue of obese people. Epidermal keratinocytes and dermal fibroblasts also express 11β-HSD1. However, the function of the enzymatic activity 11β-HSD1 in skin is not known. We found that 11β-HSD1 was expressed in human and murine epidermis, and this expression increased as keratinocytes differentiate. The expression of 11β-HSD1 by normal human epidermal keratinocytes (NHEKs) was increased by starvation or calcium-induced differentiation in vitro. A selective inhibitor of 11β-HSD1 promoted proliferation of NHEKs and normal human dermal fibroblasts, but did not alter the differentiation of NHEKs. Topical application of selective 11β-HSD1 inhibitor to the dorsal skin of hairless mice caused proliferation of keratinocytes. Taken together, these data suggest that 11β-HSD1 is involved in tissue remodeling of the skin. This hypothesis was further supported by the observation that topical application of the selective 11β-HSD1 inhibitor enhanced cutaneous wound healing in C57BL/6 mice and ob/ob mice. Collectively, we conclude that 11β-HSD1 is negatively regulating the proliferation of keratinocytes and fibroblasts, and cutaneous wound healing. Hence, 11β-HSD1 might maintain skin homeostasis by regulating the proliferation of keratinocytes and dermal fibroblasts. Thus 11β-HSD1 is a novel candidate target for the design of skin disease treatments

    Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein

    Get PDF
    The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561Âą365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86Âą0.61; the mean Young's modulus was 18.62Âą10.30 MPa; and the mean tensile strength was 8.14Âą5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and Îł-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.(undefined)info:eu-repo/semantics/publishedVersio

    De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus

    Get PDF
    Starfish have been instrumental in many fields of biological and ecological research. Oocytes of Astropecten aranciacus, a common species native to the Mediterranean Sea and the East Atlantic, have long been used as an experimental model to study meiotic maturation, fertilization, intracellular Ca2+ signaling, and cell cycle controls. However, investigation of the underlying molecular mechanisms has often been hampered by the overall lack of DNA or protein sequences for the species. In this study, we have assembled a transcriptome for this species from the oocytes, eggs, zygotes, and early embryos, which are known to have the highest RNA sequence complexity. Annotation of the transcriptome identified over 32,000 transcripts including the ones that encode 13 distinct cyclins and as many cyclin-dependent kinases (CDK), as well as the expected components of intracellular Ca2+ signaling toolkit. Although the mRNAs of cyclin and CDK families did not undergo significant abundance changes through the stages from oocyte to early embryo, as judged by real-time PCR, the transcript encoding Mos, a negative regulator of mitotic cell cycle, was drastically reduced during the period of rapid cleavages. Molecular phylogenetic analysis using the homologous amino acid sequences of cytochrome oxidase subunit I from A. aranciacus and 30 other starfish species indicated that Paxillosida, to which A. aranciacus belongs, is not likely to be the most basal order in Asteroidea. Taken together, the first transcriptome we assembled in this species is expected to enable us to perform comparative studies and to design gene-specific molecular tools with which to tackle long-standing biological questions

    Privacy enhancing technologies (PETs) for connected vehicles in smart cities

    Get PDF
    This is an accepted manuscript of an article published by Wiley in Transactions on Emerging Telecommunications Technologies, available online: https://doi.org/10.1002/ett.4173 The accepted version of the publication may differ from the final published version.Many Experts believe that the Internet of Things (IoT) is a new revolution in technology that has brought many benefits for our organizations, businesses, and industries. However, information security and privacy protection are important challenges particularly for smart vehicles in smart cities that have attracted the attention of experts in this domain. Privacy Enhancing Technologies (PETs) endeavor to mitigate the risk of privacy invasions, but the literature lacks a thorough review of the approaches and techniques that support individuals' privacy in the connection between smart vehicles and smart cities. This gap has stimulated us to conduct this research with the main goal of reviewing recent privacy-enhancing technologies, approaches, taxonomy, challenges, and solutions on the application of PETs for smart vehicles in smart cities. The significant aspect of this study originates from the inclusion of data-oriented and process-oriented privacy protection. This research also identifies limitations of existing PETs, complementary technologies, and potential research directions.Published onlin

    Arachnopeziza cornuta

    No full text
    Fung

    Proteins in fungal taxonomy

    No full text
    • …
    corecore