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Abstract 

Antimony (Sb) is a technology critical element whose presence is ubiquitous in manufactured 

products, and in particular in plastics where it is used extensively as a flame retardant synergist 

for brominated compounds, as a catalyst for polyethylene terephthalate production, and as a 

pigment for colour. This study reviews the usage, regulations and fate of  Sb in plastics by 

examining primary data on its production, applications, contents in and migration from 

manufactured objects, and presence in and release from waste, including the disposal and 

recycling routes for this material (i.e., non-controlled disposal, incineration, landfilling and 

recycling). Consumption of Sb and the relative apportioning of the metalloid between different 

uses in plastics change continuously and are largely driven by dynamic economic factors; 

accordingly, reference to secondary data or sources can be misleading. Since Sb is not 

recovered from plastics, its fate is entirely linked to the fate of plastics themselves which, as 

far as disposal and recycling are concerned, might be dictated by the presence of co-associated 

regulated substances such as brominated flame retardants. Significantly, because of the high 

leachability of Sb from bottom incineration ashes, the EU considers the metalloid as the most 

problematic substance regarding the potential reuse of this material. 
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1. Introduction 

The ubiquitous presence of antimony (Sb) in plastics can be considered in two different 

contexts depending on whether the interest is in the fate of Sb – and in this case whether the 

objective is environmentally/toxicologically oriented or recovery orientated – or if the interest 

is in the fate of plastics (e.g., recycling and disposal and its effects). This means that different 

communities may be interested in the subject, albeit with different approaches and objectives. 

Antimony is in the 2017 list of Critical Raw Materials for the EU [1], and, although not 

considered critical in the US in the past [2], it has been included in the 2018 List of Critical 

Minerals [3]. Materials appearing on these lists have been identified as critical for the EU and 

US because of possible risks of supply shortage (scarcity) and because their impacts on the 

economy are higher than those of most of the other raw materials. Antimony is considered a 

critical material because it is nearly exclusively produced in China. End-of-life recycling input 

rate is 28% in Europe [1] but this arises mostly because of its use as a metal (or, strictly, a 

metalloid). Antimony cannot be recovered from plastics since it is generally dispersed at low 

concentrations in the polymeric matrix. Nevertheless, for the ‘plastics community’, the 

presence of Sb can be a nuisance because it can hinder plastic recycling or disposal and the 

reuse of bottom ashes resulting from waste incineration. 

The main driver for the studies in the ‘antimony community’ is the possible toxicity and 

ecotoxicological effects derived from its presence in products in use, in legacy plastics, and in 

disposed (e.g. landfilled) materials. Toxicity concerns relate to antimony trioxide (Sb2O3), the 

most commercially significant form of Sb. Some years ago, the International Agency for 

Research on Cancer (IARC) listed Sb2O3 as group 2B, “possibly carcinogenic to humans” [4]. 

Since the IARC evaluation, additional studies with Sb2O3 have revealed inconclusive or 

ambiguous results. Recently, the US National Toxicology Program (NTP) asserted that 

“…antimony trioxide is reasonably anticipated to be a human carcinogen based on sufficient 

evidence of carcinogenicity from studies in experimental animals and supporting evidence 

from mechanistic studies. The data available from studies in humans are inadequate to evaluate 

the relationship between human cancer and exposure specifically to Sb2O3 or antimony in 

general” [5]. 

Exposure to Sb2O3 is mainly in the work place but can also occur when consumer products 

containing the compound are used or while breathing contaminated air. Therefore, the interest 

in the presence of Sb in consumer products, which are mostly plastics, is increasing. It is 
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surprising that there is a lack of exposure data from consumer products [5,6], but even data on 

the occurrence and concentrations of Sb in plastics are scarce. In this study we aim to assess 

the presence and fate of Sb in plastics, as defined by the blue shaded area in Figure 1, but do 

not an attempt to establish a complete life cycle analysis or a mass balance evaluation of the 

metalloid. 

2. Antimony production and uses 

For the production and uses of Sb, we rely on USGS data 

(https://minerals.usgs.gov/minerals/pubs/commodity/antimony/). Other sources exist (e.g., 

Roskill) and values might not be entirely coincident but we consider the USGS to be the most 

reliable source for the scope of our study. (Note that the International Antimony Association 

(www.antimony.com) does not report these data.) According to the data, plotted in Figure 2, 

world Sb production steadily increased from the beginning of the 20th century until 1980, with 

two peaks coincident with the two World Wars. From 1980 to 2000 production at least doubled, 

but since then it has remained at between 150,000 and 200,000 t a-1. 

In plastics, Sb is encountered both as an additive (for flame retardancy or colour) and as 

catalytic residue from the manufacture of specific polymers. However, the recycling of plastics 

from one use or source to another may result in the wider contamination of products by Sb at 

lower concentrations. As a catalyst, the most important use of Sb is in the production of the 

polyester thermoplastic, including polyethylene terephthalate (PET). This polymer is used in 

textiles and for the storage or packaging of food and drinks and Sb residues arising from the 

use of Sb2O3 or antimony triacetate (Sb(CH3CO2)3) are usually present at concentrations of a 

few hundred mg kg-1 [7]. 

The trioxide of antimony is often added to plastic casings of heat-generating electrical products 

as a flame retardant synergist. Typically, Sb2O3 is added in combination with halogenated 

(mainly brominated) flame retardants and antimony oxyhalides generated in the gas phase act 

as free radical scavengers, with the ratio of Br:Sb in most products in the range 2:1 to 3:1 [8] 

and the content of Sb2O3 ranging from about 1% by weight in PVC to 30%  in some specialist 

rubbers [7]. The trioxide performs well in most plastics but in PET it may act as a 

depolymerisation catalyst; here, therefore, other compounds of antimony, like sodium 

antimonite, are used as flame retardant synergists. 
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As a very fine white powder, Sb2O3 is also sometimes used to pigment polymers for specialised 

applications [9]. More important as a pigment, however, Sb is a component of many rutile 

forms of complex inorganic compounds that are used in plastics [10]. These include nickel 

antimony titanium yellow (pigment yellow 53; (Ti,Ni,Sb)O2), chrome antimony titanium 

yellow (pigment brown 24; (Ti,Cr,Sb)O2), manganese antimony titanium brown (pigment 

yellow 164; (Ti,Mn,Sb)O2) and manganese chrome antimony brown (pigment brown 40; 

(Ti,Mn,Cr,Sb)O2). Such pigments have excellent fastness properties, and are durable, 

chemically resistant and thermally stable up to 1000oC. Their use has increased over the past 

two decades, especially in polyolefins and acrylonitrile-butadiene-styrene (ABS), because Cd- 

and Pb-based alternatives have been phased out on safety and environmental grounds. Figure 

3 compares x-ray fluorescence (XRF) spectra from yellow ABS Lego bricks manufactured in 

about 1995 and about 1980 that demonstrate a clear shift from Cd-based pigments to those 

containing Sb and Ti in what is essentially the same product. 

Information on US Sb consumption in different applications (metal, flame retardants and non-

metallic applications other than flame retardants) is available since 1943 (Figure 4a) and in 

which matrices flame retardants have been used since 1974 (Figure 4b). US data show that 

flame retardant synergists represent an important component of Sb usage, and in particular in 

plastics (a total of 2440 tonnes (t) in 2015 with 76.9% added to plastics, 15.7% to textiles, 5.3% 

to rubber and 2.1% to adhesives), but the percentage of this application has clearly decreased 

between 1995 and 2015 (from 55% to 35% of all Sb use). Other uses of Sb in plastics include 

pigments and, as Sb2O3, the principal catalyst for the production of polyester fibre and for PET 

production. 

Data available for Europe for 2005 are given in [6] and cited in [11], which presumably means 

that more recent quantitative information is not available. Values are difficult to compare with 

those from the US because data are older and the production and usage of Sb is very dynamic. 

Moreover, the precise categories referred to in Europe and the US are different. Thus, about 

24,000 t of Sb were used in the EU in 2005 with the following distribution: as a flame-retardant 

in plastics (9200 t), PVC (8800 t), rubber (2200 t) and textiles (1750 t); as a catalyst in PET 

production (950 t); as an additive in glass manufacture (250 t); and in pigments, paints and 

ceramics (1100 t). 
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3. Plastic production 

According to a recent study by Geyer et al. [12], the total amount of fibres and resins produced 

from 1950 through 2015 world-wide is 7,800 Mt, with 50% of the plastic produced in the last 

13 years of the period considered. When additives are accounted for, the total weight increases 

to 8,300 Mt. According to the same authors, approximately 6,300 Mt of plastic waste have been 

generated in the same period, around 9% of which has been recycled, 12% incinerated and 79% 

discarded (i.e., accumulated in landfills or lost in nature); therefore, the in-use stocks are 

estimated at 2,500 Mt.  

The distribution of non-fibrous plastics produced is as follows: polyethylene (PE) 36%, 

polypropylene (PP) 21%, and polyvinyl chloride (PVC) 12%; PET, polyurethane (PUR) and 

polystyrene (PS) contribute <10% each. Polyester, most of which is PET, accounts for 70% of 

all fibrous plastics (polyester, polyamide, and acrylic).The distribution by usage indicates that 

42% of all non-fibrous plastics have been employed for packaging (predominantly PE, PP and 

PET) while the construction sector has used 69% of all PVC produced or in stock. When 

making comparisons, however, it is also important to consider product life-times as packaging 

is largely consumed in the same year but construction materials may last for decades. 

4. Measurements of antimony in plastics 

Over the past few years, the authors have generated an extensive dataset of Sb in consumer 

plastics [13-15] and in beached marine and lacustrine litter [16,17] generated by energy-

dispersive portable x-ray fluorescence spectrometry. Specifically, a Niton XL3t instrument has 

been deployed in situ or in an accessory stand using a low density plastics mode and with 

appropriate thickness correction. The data reveal how widely Sb is encountered in plastics and 

in a range of concentrations that spans several orders of magnitude (from the detection limit of 

the instrument of a few tens of mg kg-1 to about 10% by weight). Overall, Sb was detected in 

about 15% of several thousand consumer items analysed, and was most abundantly 

encountered in electrical equipment and items of (polyester) clothing. A careful examination 

of the data reveals that the occurrence of Sb can be linked with either its different uses or the 

recycling of plastic, as summarised in Table 1. Here, the different sources of Sb are shown with 

concentration ranges of the metalloid in the plastics, concentrations of Br as an indicator of the 

presence or content of halogenated flame retardant content, typical colours of the plastic and 

examples of the type of product where it is often found. Note that the categories or sources are 

not necessarily mutually exclusive in that some flame retarded materials or PET products could 



7 
 

also be pigmented with Sb while pigmented products could be derived from recycled electrical 

waste. 

Briefly, Sb is found in a variety of PET- or polyester-based products of any colour at 

concentrations < 1000 mg kg-1 and in the absence of detectable Br as catalytic residue, while 

higher Sb concentrations are encountered in yellow, brown and green products and in the 

absence of Br as a pigment. In electrical equipment, both old and new, Sb may be found as a 

synergist at concentrations above 5000 mg kg-1 and usually in the presence of Br at similar or 

greater concentrations. In PVC electrical (and some non-electrical) products, Sb is encountered 

at concentrations > 5000 mg kg-1 but in the absence of detectable Br (where Cl as a component 

of the polymer acts as an inherent flame retardant).  

5. Release of Sb from plastics during use 

Shotyk et al. [18] first provided evidence of Sb leaching from PET bottles into contained water 

when the element was measured in 132 brands of bottled water from 28 countries. Hansen and 

Pergantis [19] determined Sb in a selection of different juices packed in either bottles of PET 

or other commonly used container materials. Here, the driver for the research was that fruit 

juices contain high amounts of organic acids, such as citric, malic and ascorbic, which are 

known to be efficient complexants of Sb(III). Juices bottled in PET contained more Sb than 

those bottled in Tetra Pak, glass containers or aluminium cans but always, as was the case of 

Shotyk’s study, below regulatory values for drinking water (5 g L-1 in Europe [20] and in 

China [21]) and the USEPA maximum contaminant level (MCL) of 6 g L-1 [22]). Shotyk and 

co-workers’ article [18] triggered the publication of many studies examining Sb contents in 

bottled waters that, more than 10 years later, continue to be regularly published. Among these 

studies, many different environmental factors have been identified that affect the amount of Sb 

released. For instance, concentrations were found to increase by 90% on average in 48 brands 

of bottled drinking water after a period of 6 months’ storage at room temperature [23], with 

leaching from PET into water subsequently found to increase rapidly during an initial storage 

period and then the attain a steady state [24] Temperature has an effect on the release of Sb 

from PET [24-26], and greater release due to low pH has also been observed [26] and 

subsequently confirmed by a dissolution rate that is greater into sparkling water than into still 

water [24]. In contrast, PET exposure to sunlight appears to be of lesser significance to Sb 

migration [24,26], while contradictory conclusions have been reached regarding the effect of 

bottle colour on release [25,27]. Westerhoff et al. [25] and more recent publications [28-31] 
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have also found that the extent of Sb leaching from PET containers from different 

manufacturers or mineral water brands can differ by an order of magnitude in experiments 

conducted under the same experimental conditions, thus casting doubts about the ability to 

make generalisations of Sb mobilisation. 

In the European Union, the conformity of a plastic material that comes into contact with food 

is covered by the 10/2011 Regulation [32] that is based on migration tests. Specific migration 

limits (SML) are provided for some substances, including antimony trioxide whose SML is 

0.04 mg Sb per kg of food. Migration of Sb from PET containers into regulated EU food 

simulants, oil and vinegar has been determined and found to be far below the SML [33]. 

In contrast with the interest in Sb release from PET, the scarcity of data on Sb release from 

other polymers is striking, particularly when the current interest in the study of the 

environmental behaviour and potential (eco)toxicity of the metalloid stems from its alleged and 

well-publicised implication in SIDS (Sudden Infant Death Syndrome) in the late 90s (through 

use in cot mattresses [34,35]). This scarcity is confirmed by the recent NTP report on Sb2O3 

carcinogenicity [5] referring to the above-mentioned EU 2008 report [6] as the only source to 

estimate consumer exposure to Sb from products containing Sb2O3. Note that NTP gives ‘non 

determined values’ for two of the four exposure pathways considered: sitting on flame-

retardant-treated upholstery (dermal) and sucking on toys (oral). 

As a pigment, flame retardant synergist or residue from recycling, Sb may occur in a variety 

of plastic toys. The original European Council Directive 88/378/EEC on toy safety [36] 

stipulated a limit of 60 mg kg-1 migratable Sb, where migration was defined by two-hour 

extraction in dilute HCl at 37 oC. An amended directive, applied to toys placed on the market 

from July 2013, provided revised limits on migration that were specific to the type of matrix 

involved [37]; specifically, liquid or sticky = 11.3 mg kg-1; brittle, powder-like or pliable = 45 

mg kg-1; material that can be scraped off = 560 mg kg-1. Recent application of the migration 

test to old plastic toys revealed compliance in all cases, with a maximum migration of about 

100 mg kg-1 from beaded jewellery [15].  

In a recent extensive survey of sludges and effluents of 64 Swiss wastewater treatment plants 

[38], the median Sb concentration in effluents was 1.0 g L-1, a concentration clearly higher 

than in European freshwaters (median value: 0.070 g L-1, n = 807) [35]. Likewise, the median 

Sb concentration in sludges, 3 mg kg-1, is considerably higher than in the Upper Continental 
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Crust (UCC) (0.75 mg kg-1) [39] and in European soils (median: 0.470 mg kg-1, n = 783) [40]. 

It is impossible to know which part of the anthropogenic contribution comes from plastics and 

which is from the presence of Sb in other matrices but the data suggest that the use of Sb is 

associated with a measurable release of the element and, given its extensive presence in 

plastics, there is no reason to think that they do not contribute 

6. Where does antimony in plastics go ‘after use’? 

6.1 ‘Lost in nature’ 

The fate of Sb in plastics ‘after use’ is directly linked to plastics end-of-life. Geyer et al. [12] 

estimated that around 4900 Mt of all plastics ever produced have been discarded and are 

accumulating in landfills or in the natural environment. It is impossible to estimate the amount 

that has not been disposed of in a controlled way but observations, mainly in the oceans, point 

to a significant amount of plastics having been mismanaged. For instance, plastic waste inputs 

from land into the ocean have been estimated at 4.8 to 12.7 Mt for 2010 [41]. Increasing 

attention has been paid to particles known to be of a few millimetres down to micrometres in 

size, with research into the environmental presence and impact of these ‘microplastics’ in 

marine and freshwater environments accelerating in recent years. 

Antimony concentrations were recently determined in beached plastics collected from the 

shores of Lake Geneva, Switzerland [17]. Antimony was detected in 11% of the 670 plastics 

measured, with a median concentration of 183 mg kg-1 (range: 33.1-27,100 mg kg-1). Plastics 

containing measurable Sb concentrations seem to be less abundant on ocean beaches, with the 

element only present in 5 out of 149 plastics collected from Whitsand Bay, southwest England, 

and a median concentration of 228 mg kg-1 (range: 154-6260 mg kg-1) [16]. 

6.2 Antimony in waste 

In Europe, waste containing Sb is defined and classified by various regulations. According to 

the Classification, Labelling and Packaging regulations [42], waste is hazardous through the 

suspected carcinogenetic properties of Sb (IARC group 2B) if the concentration of Sb2O3 is ≥ 

0.1% (equivalent to a concentration of Sb of ≥ 0.08%). In the EU, Sb is also classified as a 

‘heavy metal’ and waste is ‘ecotoxic’, or poses an immediate or delayed risk to one or more 

sectors of the environment, if concentrations of all heavy metals, including Sb, exceed certain 

thresholds [43,44]. If Sb were the sole contributor to toxicity, waste would be ecotoxic if the 
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concentration of Sb2O3 exceeds 2.5%. While this limit is not expected in most plastics, it must 

be appreciated that many end-of-life products containing high concentrations of Sb also contain 

brominated flame-retardants. Such waste would, therefore, be classified according to 

regulations governing these additives [45].  

Although Sb is not included in the current RoHS (Restriction of Hazardous Substances) 

Directive [46,47], nor in the Waste Electrical and Electronic Equipment (WEEE) Directive 

[48]. Antimony trioxide is one of the seven substances currently being assessed in the review 

of the list of restricted substances under RoHS 2 (RoHS Pack 15) [49]. Nevertheless, because 

of the sorting practices of WEEE and the inability to recover Sb from plastics on an industrial 

scale, Sb in WEEE is expected to share similar fates to many brominated compounds used as 

flame retardants. These include the incidental and unintended recycling of the metalloid into 

new consumer goods as described above, a process that has resulted from the exportation of 

WEEE and other materials from Europe and the US to countries in south east Asia and Africa 

that also manufacture plastic products [13,14].  

6.2.1 Incineration 

The practice of end-disposal of municipal waste, either by incineration (waste-to-energy, WTE) 

or landfilling, varies considerably among different countries and regions. In the EU, the focus 

has been on reducing the fractions disposed of at landfills, with the preferred option being waste 

incineration. In the US in 2015, 12.8 % of municipal solid waste (MSW) was incinerated and 

52.5% was landfilled, but the trend reveals a gradual shift from landfilling to incineration [50]. 

Urbanization is growing in China, and WTE incineration is going to play an increasingly 

important role in the country's waste management [51].  

Older studies have reported Sb concentrations in MSW of about 10±60 mg kg-1 [52]. In a 

comprehensive literature review from 2016, Götze and co-workers examined almost 100 

publications globally (period 1990-2014) on the physical and chemical composition of 

individual waste material fractions [53]. The highest median Sb concentrations were found in 

the waste ‘plastic’ fraction (24 mg kg-1; containing different plastic products and polymer 

types, and including plastic packaging and household items) and a ‘mix’ fraction (or residual 

MSW; 62.9 mg kg-1) (Figure 5). These waste fractions would also be the most relevant for 

waste incineration, in addition to a ‘combustibles’ fraction (median concentration = 6.2 mg kg-
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1). As described in section 4.1, substantially higher Sb concentrations (> 5000 mg kg-1) may 

occur in individual plastic products which eventually end up as waste. 

Paoletti et al. [54] compared the industrial application of Sb compounds with the Sb 

contributions of solid waste fractions, and speculated that the element entering a waste 

combustion plant will be present mainly as trioxides, pentoxides and antimonates, with the 

main contribution coming from plastics, including WEEE that has been improperly disposed 

of. During incineration of municipal waste, approximately 20–40% of the waste content is 

converted to bottom ash and 2–8% ends up in the air pollution control (APC) system (hereafter 

referred to as fly ash) [52,55]. Thermodynamic calculations predict a high volatility of Sb 

during solid waste incineration and that nearly all Sb entering the combustion chamber would 

be volatilized and leave the chamber along with the flue gas.  [54] However, previous studies 

on the behaviour of Sb during incineration shows that about one half of the of Sb ends up in 

bottom ash with the remainder (33 to 75%) ending up in the fly ash or emitted to air 

[54,56,57,58]. The distribution is dependent on the type of waste, combustion temperature and 

occurrence of other elements, with chlorine in particular (e.g. through addition of PVC) 

promoting antimony volatilization [54,59]. Studies carried out by Paoletti et al. (2001) show 

that a possible reason for the fixation of antimony in the bottom ashes could be the presence of 

antimonates in the fuel bed or their formation arising from interactions with other chemical 

compounds like calcium oxide [54]. 

Fly ash is often defined as hazardous waste due to its content of soluble salts, potentially toxic 

metals and trace organic pollutants, and its high pH in contact with water. Although most of 

the fly ash generated globally is currently landfilled, with or without prior treatment [60,61], 

there is increasing focus on resource recovery of this residue [60]. Bottom ash from municipal 

solid waste incineration is generally considered as non-hazardous waste, and in many countries 

is disposed of at non-hazardous waste landfills or recovered as construction material in 

engineering applications (bulk fill, roads, embankments, substitute aggregate). Due to 

increased landfill costs and the push towards a circular economy, bottom ash is often regarded 

as an underutilized secondary source whose recovery should be increased [6,62-63]. 

NOAH Langøya (Norway) annually treats approximately 300,000 t of waste incineration fly 

ash originating from Norway, Sweden and Denmark. Antimony analysis of nearly 2000 fly ash 

samples in the period 2007 – 2017 revealed variable concentrations with a median of 470 mg 

kg-1 (average = 610 ± 2342). These values are consistent with previously reported concentration 
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ranges in waste incineration fly ash (340–1016 mg kg-1) given in the literature [52,64], as well 

as data from INERIS (median = 322 mg kg-1; n=810; INERIS, unpublished) and values 

reviewed by Cornelis et al. (2008) (80 and 1000 mg kg-1) [65]. 

In a Swedish study on Sb in 31 energy waste ashes, the average concentration of the metalloid 

in fluidized bed incinerator fly ash and grate boiler fly ash was 192 and 1140 mg kg-1, 

respectively, revealing substantial differences between the two incineration technologies 

regarding the fate of the element during incineration [56]. A similar difference was shown in a 

Japanese study of fly ash samples from 26 WTE plants, with an average Sb concentration in 

fly ash from fluidized bed and grate boiler (stoker) incinerators of 155 ± 45 (n = 7) and 435 

±81 (n = 19) mg kg-1 respectively [66]. By comparison, considerably lower Sb concentrations 

in MSWI fly ash have been reported from studies in China, varying between 23 and 197 mg 

kg-1 [67,68]. 

Statistical analysis of the NOAH Langøya data indicates that there is a slight decrease (Mann-

Kenndal test: Z= -3.37, Sens slope: 11 mg kg-1 y-1) in Sb fly ash concentrations from 2006 to 

2017 (Figure 5). This is consistent with data for the Nordic countries on the total use of Sb2O3 

in products that indicates an overall decline in the period 2000 – 2016 (http://spin2000.net/). It 

has been suggested by the European Semiconductor Industry Association, ESIA, that a decline 

might be a result of efforts aimed at reducing the use of Sb2O3 as a synergist in association with 

brominated flame retardants [11]. However, it is uncertain if this trend and the reason behind 

it are representative of other regions. 

Annex II to Directive 1999/31/EC gives leaching limit values for Sb from waste acceptable at 

landfills for inert, ordinary and hazardous waste [69]. Antimony leaching limits for hazardous 

waste landfills are 1.0 mg L-1 (standard up-flow column test, EN 14405) and 5 mg kg-1 

(standard batch test, EN 12457; liquid-solid ratio (L/S) of 10), respectively. Routinely standard 

batch tests (L/S of 10) on untreated fly ash at NOAH Langøya (period 2008 – 2013, n = 168) 

show an average Sb concentration of 1.28 ± 1.66 mg kg-1 [70], which is below the criterion for 

hazardous waste. In an experimental study on waste incineration fly ash, Okkenhaug et al. [71] 

showed a low water leachability of Sb at natural pH (11-12), but a strong inverse dependence 

of migration on pH. This study also demonstrated that Sb occurred exclusively in the 

pentavalent form in the water phase [71].  
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Antimony concentrations measured in waste incineration bottom ash are substantially lower 

than concentrations in fly ash. In a study covering 18 waste incineration plants in Norway, the 

average Sb concentration in fresh bottom ash was 85 ± 25 mg kg-1 [72] and in the same range 

as reported for bottom ashes from waste incineration in Sweden (means of 61.8 and 86.5 mg 

kg-1 for great bottom ash and fluidized bed ash, respectively; [56]). By comparison, the average 

Sb concentration in bottom ash from The Netherlands has been reported as 34 mg kg-1 [64]. 

In a study on incineration of wastes containing Sb in fluid bed boilers, high leakage of the 

element from bottom ash is reported [73]. Standard leaching batch tests with water (L/S 10 

batch test, 24 h shaking) of bottom ashes on 14 Norwegian fresh bottom ashes showed an 

average migratable concentration of 0.39 ±0.26 mg kg-1, which is below the European leaching 

limit for ordinary waste landfills of 0.7 mg kg-1 but exceeds the leaching limit for inert waste 

landfills of 0.06 mg kg-1 [72]. The same type of leaching test carried out on bottom ashes in 

Sweden resulted in average values ranging between 0.175 and 0.199 mg kg-1 for great bottom 

ash and boiler ash, respectively [56]. Storage of the bottom ash increases the leachability [72], 

possibly due to carbonization and a subsequent pH decrease leading to a dissolution of Sb 

containing minerals (ettringite and romeites) [62,74]. Because the leaching of Sb from bottom 

ashes has proven difficult to reduce through various methods tested, the EU considers Sb as 

the most problematic substance in ashes from municipal incinerators as regards possible reuse, 

imposing more general constraints on the recovery potential of the waste material [6,62,75]. 

Data on Sb emissions to air from incineration of waste are scarce. A literature review carried 

out by the EU indicates that 0.1-1% of the Sb in MSW that was incinerated is emitted to the 

atmosphere [6]. In a comprehensive global inventory of atmospheric Sb emissions from 

anthropogenic activities, Tian et al. [76] estimate that waste incineration ranks as the second 

largest Sb emission source to the environment, contributing about 23.9% to the global 

emissions in 2010. 

6.2.2 Landfilling 

Emissions of Sb from landfills are mainly related to leachate water and atmospheric discharges 

(landfill gasses), with the former route considered to be the most important [6]. Landfill 

leachate is mainly generated because of the percolation of water through the landfill body due 

to precipitation or infiltration of groundwater or surface water. Depending on infiltration and 

interception of water, landfills can produce high quantities of leachate water. Moreover, 

depending on the closure technology and reduction of infiltration of external water, many 
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landfills will still produce leachate water post-closure, with the makeup of the waste and 

landfill body conditions (e.g. pH, redox conditions, temperature) determining leachate 

composition. The presence of Sb in leachate water is related to the aggregated content of all 

waste containing the element in different forms. Based on potential leaching of various waste 

fractions, the presence of plastics and bottom ash from waste incineration are believed to be 

the most significant waste fractions [77].  

Quantitative information about Sb in leachate water from landfills are scarce. Kiddee et al. [78] 

carried out a survey of four selected MSW landfills (also including WEEE) in an arid region 

of South Australia and found Sb concentrations varying between 1.4 ±0.8 and 13 ±6 µg L-1 in 

fresh leachate. Antimony concentrations measured in municipal landfill leachates in Norway 

(n = 26) in the period 2007 – 2013 were between 0.1 and 9 µg L-1 [79], with more 

comprehensive studies encompassing 40 years of operation (1968-2008) showing Sb 

concentrations ranging from 0.2 to 12 µg L-1 (Figure 7) [79]. In a study on municipal landfill 

leachate from various facilities in Sweden, Öman et al. [80] found Sb concentrations ranging 

from 0.82 to 1.7 µg L-1 (n = 3). These data are consistent with those reported by Looser and 

co-workers [81] in landfill leachate from 41 landfills (six were MSW landfills) in Switzerland, 

Italy and France, with 10-90% percentiles of Sb concentrations of 0.1 and 1.5 μg L-1, 

respectively. One review in the literature for municipal waste landfills reported a range of Sb 

concentrations of 0–3190 μg L-1 [82], suggesting that some landfills can have substantially 

larger leachable Sb contents than the facilities referred to above. 

Landfill leachate may either be treated on site, transferred to an off-site municipal sewage plant 

or discharged directly to surface water [6]. On-site treatment of leachate water by aerated 

lagoon and sedimentation (site A and B) and membrane filtration (site C) may reduce the Sb 

concentrations, as exemplified in Figure 7 [79]. 

7. Summary 

As a potentially toxic technology critical element, Sb has received increasing scientific and 

regulatory attention over the past two decades. Antimony occurs widely in plastics and at 

concentrations ranging from a few tens of mg kg-1 to about 10% by weight in the form of a 

flame retardant synergist with brominated compounds or in PVC, a catalytic residue arising 

from the manufacture of PET, and a pigment. Because technology is currently unavailable for 

the recovery of Sb from plastics, the metalloid is widely dispersed in products derived from 

recycling, and in particular those recycled form waste electronic plastic. Consumption of Sb 
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and its relative apportioning between these and other (non-plastic) uses change continuously 

and are largely dependent on economic considerations, with the use of secondary or outdated 

sources of data providing potentially misleading conclusions. 

Despite a co-association with Br in electronic plastics and products recycled therefrom, Sb is 

not included in the RoHS Directive; however, concentrations in or migration from other 

consumer plastics like food-contact items and toys are regulated, as are concentrations related 

to the municipal waste stream. With shifts in the disposal of waste towards incineration,  

coupled with an apparent chemical suppression of the volatility of the element during this 

process, a concern is the occurrence and leachability of Sb from bottom ash as this can impose 

constraints on the recovery of the material for reuse. The ubiquity of Sb in plastics through 

recycling also ensures that it is a pervasive contaminant of marine and freshwater litter where 

its impacts and fate are largely unknown. 
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Figure captions 

Figure 1. A flow chart showing the use and fate of Sb in plastics. Note that the blue area 

shows the scope of our study and that the possible recycling of bottom ashes is not included 

in the schema. 

Figure 2. World antimony production over the past 120 years. Source: 

https://minerals.usgs.gov/minerals/pubs/commodity/antimony/ 

Figure 3. XRF spectra for yellow ABS Lego bricks manufactured in about (a) 1995 and (b) 

1980. 

Figure 4. Reported Sb consumption in the US from the USGS Mineral Yearbooks 

(https://minerals.usgs.gov/minerals/pubs/commodity/antimony/). (a) Reported uses classified 

as metal, flame retardant and non-metal uses other than flame retardant from 1943 to 2016. (b) 

Reported Sb consumption in flame retardants classified by uses from 1974 to 2016. Values 

before 1980 were in short t and have been converted here to metric t. The consumption values 

in the Mineral Yearbooks are based on the voluntary responses received from the industry to 

USGS surveys. 

Figure 5. Box–whisker-plots and data points for antimony concentrations in different waste 

material fractions reported in literature. The displayed whiskers correspond to the upper 

quartile plus the interquartile range multiplied by a factor of 1.5 and the lower quartile minus 

the interquartile range multiplied by a factor 1.5. All values beyond these points are considered 

as outliers. Source: [52], Appendix B. 

Figure 6: Antimony concentrations in fly ash from waste incineration in Norway, Sweden and 

Denmark (time period 2006 – 2017). XRF data from NOAH, Langøya (n=1993). 

Figure 7: Antimony concentrations in untreated and treated (on-site) municipal landfill leachate 

from three Norwegian municipal waste landfills (A-C) that have been operated for 

approximately 40 years (1968 – 2008) [68]. The mean and standard deviation is given in each 

case. 
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Figure 1 
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Figure 2 
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Figures 3a and 3b 
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Figure 4a 
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Figure 4b 
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Figure 5 
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Figure 6 
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Figure 7 
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Table 1: Typical concentration range of Sb encountered in different types of plastic product, along with its co-association with Br, representative plastic 

colours and specific product examples.  

 

 

Sb, mg kg-1 Br, mg kg-1 colours examples

PET catalytic residue 100-800 absent any food trays, water bottles, clothing, curtains, rucksacks

coloured pigment 500-2000 absent yellow, brown, green toys, games, office equipment, watering cans

synergist in electrical equipment (non-PVC) > 5000 > 5000 mainly neutral chargers, heaters, remote controls, circuit boards, lighbulb collars

synergist in PVC > 5000 absent mainly neutral plugs, wire insulation, usb connectors, hosing, piping

recycled from electrical equipment 50-3000 50-5000 mainly neutral office equipment, toys, beads, tool handles, new electrical products

food-contact items


