1,320 research outputs found

    Initial surface deformations during impact on a liquid pool

    Get PDF
    A tiny air bubble can be entrapped at the bottom of a solid sphere that impacts onto a liquid pool. The bubble forms due to the deformation of the liquid surface by a local pressure buildup inside the surrounding gas, as also observed during the impact of a liquid drop on a solid wall. Here we perform a perturbation analysis to quantitatively predict the initial deformations of the free surface of the liquid pool as it is approached by a solid sphere. We study the natural limits where the gas can be treated as a viscous fluid (Stokes flow) or as an inviscid fluid (potential flow). For both cases we derive the spatio-temporal evolution of the pool surface, and recover some of the recently proposed scaling laws for bubble entrapment. When inserting typical experimental values for the impact parameters, we find that the bubble volume is mainly determined by the effect of gas viscosity

    Universal mechanism for air entrainment during liquid impact

    Get PDF
    When a mm-sized liquid drop approaches a deep liquid pool, both the interface of the drop and the pool deform before the drop touches the pool. The build up of air pressure prior to coalescence is responsible for this deformation. Due to this deformation, air can be entrained at the bottom of the drop during the impact. We quantify the amount of entrained air numerically, using the Boundary Integral Method (BIM) for potential flow for the drop and the pool, coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We compare our results to various experimental data and find excellent agreement for the amount of air that is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a pool is numerically investigated and the air that is entrapped in this case also matches with available experimental data. In both cases of drop and sphere impact onto a pool the numerical air bubble volume V_b is found to be in agreement with the theoretical scaling V_b/V_{drop/sphere} ~ St^{-4/3}, where St is the Stokes number. This is the same scaling that has been found for drop impact onto a solid surface in previous research. This implies a universal mechanism for air entrainment for these different impact scenarios, which has been suggested in recent experimental work, but is now further elucidated with numerical results

    Exosomes released from breast cancer carcinomas stimulate cell movement

    Get PDF
    For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1) exosomes promote cell migration and (2) the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3) exosomes are endocytosed at the same rate regardless of the cell type; (4) exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma

    Lunar drill footplate and casing

    Get PDF
    To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg

    MRSA Prevalence and Associated Risk Factors among Health-Care Workers in Non-outbreak Situations in the Dutch-German EUREGIO

    Get PDF
    Preventing the spread of methicillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities is a major infection control target. However, only a few studies have assessed the potential role of healthcare workers (HCWs) for MRSA dissemination. To investigate the MRSA prevalence and the risk factors for MRSA colonization among HCWs, nasopharyngeal swabs were taken between June 2010 and January 2011 from 726 employees from nine acute care hospitals with different care levels within the German part of a Dutch-German border region (EUREGIO). The isolated MRSA strains were investigated using spa typing. The overall MRSA prevalence among HCWs in a non-outbreak situation was 4.6% (33 of 726), and was higher in nurses (5.6 %, 29 of 514) than in physicians (1.2%, 1 of 83). Possible risk factors associated with MRSA colonization were a known history of MRSA carriage and the presence of acne. Intensive contact with patients may facilitate MRSA transmission between patients and HCWs. Furthermore, an accumulation of risk factors was accompanied by an increased MRSA prevalence in HCW

    External sources of clean technology: evidence from the clean development mechanism

    Get PDF
    New technology is fundamental to sustainable development. However, inventors from industrialized countries often refuse technology transfer because they worry about reverse-engineering. When can clean technology transfer succeed? We develop a formal model of the political economy of North–South technology transfer. According to the model, technology transfer is possible if (1) the technology in focus has limited global commercial potential or (2) the host developing country does not have the capacity to absorb new technologies for commercial use. If both conditions fail, inventors from industrialized countries worry about the adverse competitiveness effects of reverse-engineering, so technology transfer fails. Data analysis of technology transfer in 4,894 projects implemented under the Kyoto Protocol’s Clean Development Mechanism during the 2004–2010 period provides evidence in support of the model

    Invasion of exotic earthworms into ecosystems inhabited by native earthworms

    Get PDF
    The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in soil profiles, nutrient and organic matter dynamics, other soil organisms or plant communities. Most of these cases are in areas that have been disturbed (e.g., agricultural systems) or were previously devoid of earthworms (e.g., north of Pleistocene glacial margins). It is not clear that such effects are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed. We explore the idea that indigenous earthworm fauna and/or characteristics of their native habitats may resist invasion by exotic earthworms and thereby reduce the impact of exotic species on soil processes. We review data and case studies from temperate and tropical regions to test this idea. Specifically, we address the following questions: Is disturbance a prerequisite to invasion by exotic earthworms? What are the mechanisms by which exotic earthworms may succeed or fail to invade habitats occupied by native earthworms? Potential mechanisms could include (1) intensity of propagule pressure (how frequently and at what densities have exotic species been introduced and has there been adequate time for proliferation?); (2) degree of habitat matching (once introduced, are exotic species faced with unsuitable habitat conditions, unavailable resources, or unsuited feeding strategies?); and (3) degree of biotic resistance (after introduction into an otherwise suitable habitat, are exotic species exposed to biological barriers such as predation or parasitism, ‘‘unfamiliar’’ microflora, or competition by resident native species?). Once established, do exotic species coexist with native species, or are the natives eventually excluded? Do exotic species impact soil processes differently in the presence or absence of native species? We conclude that (1) exotic earthworms do invade ecosystems inhabited by indigenous earthworms, even in the absence of obvious disturbance; (2) competitive exclusion of native earthworms by exotic earthworms is not easily demonstrated and, in fact, co-existence of native and exotic species appears to be common, even if transient; and (3) resistance to exotic earthworm invasions, if it occurs, may be more a function of physical and chemical characteristics of a habitat than of biological interactions between native and exotic earthworms

    Cost-minimization model of a multidisciplinary Antibiotic Stewardship Team based on a successful implementation on a urology ward of an academic hospital

    Get PDF
    BackgroundIn order to stimulate appropriate antimicrobial use and thereby lower the chances of resistance development, an Antibiotic Stewardship Team (A-Team) has been implemented at the University Medical Center Groningen, the Netherlands. Focus of the A-Team was a pro-active day 2 case-audit, which was financially evaluated here to calculate the return on investment from a hospital perspective.MethodsEffects were evaluated by comparing audited patients with a historic cohort with the same diagnosis-related groups. Based upon this evaluation a cost-minimization model was created that can be used to predict the financial effects of a day 2 case-audit. Sensitivity analyses were performed to deal with uncertainties. Finally, the model was used to financially evaluate the A-Team.ResultsOne whole year including 114 patients was evaluated. Implementation costs were calculated to be (sic)17,732, which represent total costs spent to implement this A-Team. For this specific patient group admitted to a urology ward and consulted on day 2 by the A-Team, the model estimated total savings of (sic)60,306 after one year for this single department, leading to a return on investment of 5.9.ConclusionsThe implemented multi-disciplinary A-Team performing a day 2 case-audit in the hospital had a positive return on investment caused by a reduced length of stay due to a more appropriate antibiotic therapy. Based on the extensive data analysis, a model of this intervention could be constructed. This model could be used by other institutions, using their own data to estimate the effects of a day 2 case-audit in their hospital.</p

    NASA Planetary Mission Concept Study: Assessing: Dwarf Planet Ceres' past and Present Habitability Potential

    Get PDF
    The Dawn mission revolutionized our understanding of Ceres during the same decade that has also witnessed the rise of ocean worlds as a research and exploration focus. We will report progress on the Planetary Mission Concept Study (PMCS) on the future exploration of Ceres under the New Frontiers or Flagship program that was selected for NASA funding in October 2019. At the time this writing, the study was just kicked off, hence this abstract reports the study plan as presented in the proposal
    • …
    corecore