
J. Fluid Mech. (2015), vol. 771, pp. 503–519. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.195

503

Initial surface deformations during impact on a
liquid pool

Wilco Bouwhuis1,†, Maurice H. W. Hendrix1,2, Devaraj van der Meer1 and
Jacco H. Snoeijer1,3

1Physics of Fluids Group, Faculty of Science and Technology, University of Twente,
7500 AE Enschede, The Netherlands

2Laboratory for Aero and Hydrodynamics, Delft University of Technology, Leeghwaterstraat 21,
NL-2628 CA Delft, The Netherlands

3Mesoscopic Transport Phenomena, Eindhoven University of Technology, Den Dolech 2,
5612 AZ Eindhoven, The Netherlands

(Received 13 November 2014; revised 19 February 2015; accepted 26 March 2015;
first published online 20 April 2015)

A tiny air bubble can be entrapped at the bottom of a solid sphere that impacts
onto a liquid pool. The bubble forms due to the deformation of the liquid surface
by a local pressure buildup inside the surrounding gas, as also observed during the
impact of a liquid drop on a solid wall. Here, we perform a perturbation analysis to
quantitatively predict the initial deformations of the free surface of a liquid pool as
it is approached by a solid sphere. We study the natural limits where the gas can be
treated as a viscous fluid (Stokes flow) or as an inviscid fluid (potential flow). For
both cases we derive the spatiotemporal evolution of the pool surface, and recover
some of the recently proposed scaling laws for bubble entrapment. On inserting typical
experimental values for the impact parameters, we find that the bubble volume is
mainly determined by the effect of gas viscosity.
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1. Introduction
The phenomena resulting from solid-body impacts on liquid surfaces are widely

studied because of their omnipresence in nature and industry (Korobkin & Pukhnachov
1988; Howison, Ockendon & Wilson 1991; Korobkin, Ellis & Smith 2008; Deng,
Anilkumar & Wang 2009; Do-Quang & Amberg 2009; Marston, Vakarelski &
Thoroddsen 2011; Hicks et al. 2012; Moore & Oliver 2014). These involve splashing,
jet formation, cavity formation and air bubble entrapment. The entrapment of tiny
micrometre-sized air bubbles between a solid object and a pool is due to a mechanism
similar to that of the impact of a liquid drop on a solid surface (Smith, Li & Wu
2003; van Dam & Le Clerc 2004; Thoroddsen et al. 2005; Driscoll & Nagel 2011;
Bouwhuis et al. 2012; Mandre & Brenner 2012; Klaseboer, Manica & Chan 2014)
or of a drop onto a liquid pool (Yiantsios & Davis 1990; Hicks & Purvis 2011;
Thoroddsen et al. 2012; Tran et al. 2013). The air that surrounds the falling object
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FIGURE 1. (a) A solid sphere (radius R) approaches a liquid surface with velocity U. The
gap height between the bottom of the sphere and the undisturbed water level (z = 0) is
h(r, t), where r and t are the radial coordinate and time respectively, with h(0, t)= h0(t).
(b) While the sphere moves downwards, the pool deflects by a small amount δ(r, t), as a
result of the local pressure buildup in the air that is squeezed out. In the limit where δ�
h0, which typically is valid up to very close to the impact time, the profiles are computed
analytically. (c) This mechanism will finally result in air bubble entrapment.

is squeezed out between the solid and the pool surface during the final stages of
impact, resulting in a local pressure buildup in the gas. This pressure will induce a
small deformation of the liquid surface (figure 1b), which will finally result in the
entrapment of a tiny air bubble by the rupture of the enclosed air film (figure 1c).
For many applications these air bubbles are undesirable, and, hence, the prediction of
their size is of great importance.

There are two main types of theoretical approach to determine the deformations
of the liquid surface and predict the size of the entrapped air bubble, namely full
numerical solutions of the problem and scaling arguments (Wilson 1991; Hicks &
Purvis 2011; Bouwhuis et al. 2012; Hicks et al. 2012; Mandre & Brenner 2012;
Klaseboer et al. 2014). Combined with experiments, these have led to the observation
that the size of the air bubble for impact of a liquid drop on a flat solid surface is
determined by either the inertia of the liquid or the surface tension (Bouwhuis et al.
2012). For increasingly high impact velocities, liquid inertia dominates and reduces
the size of the air film at impact (‘inertial regime’), while surface tension dominates
for lower velocities or smaller drop sizes (‘capillary regime’). The case of a solid
sphere impacting on a pool leads to similar bubble entrapment, and, moreover, in
the inertial regime the same scaling law (including the multiplicative prefactor) as
for the impact of a drop on a solid has been observed (Marston et al. 2011; Tran
et al. 2013). Here, the final centre height difference between the two surfaces, which
is called the dimple height Hd, and the entrapped bubble volume Vb respectively
scale as

Hd ∼ RSt−2/3, Vb ∼ R3St−4/3. (1.1a,b)

Here, St is the Stokes number, St= ρlUR/ηg, in which ρl is the density of the liquid,
R is the radius of the drop, U is the impact velocity and ηg is the dynamic viscosity
of the air. This scaling has been confirmed experimentally and numerically (Hicks &
Purvis 2011; Marston et al. 2011; Bouwhuis et al. 2012; Hicks et al. 2012; Mandre
& Brenner 2012; Tran et al. 2013). On the other hand, in the capillary regime (small
velocities or small drops), the scaling analysis predicts (Yiantsios & Davis 1990;
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Bouwhuis et al. 2012)

Hd ∼ RCa1/2, Vb ∼ R3Ca, (1.2a,b)

where Ca = ηgU/γ is the capillary number based on the gas properties and surface
tension γ . The crossover between the two regimes, at which the size of the entrapped
air bubble is maximal, is found by equating the predictions for Hd from (1.1a,b) and
(1.2a,b). Then, one finds U0 ∼ η1/7

g γ 3/7/(ρ
4/7
l R4/7), where U0 is the crossover impact

velocity, leading to maximal bubble entrapment. For an impacting water drop having
a radius of 1 mm, this gives 0.07 m s−1. Indeed, this is of the same order of
magnitude as was observed experimentally, where the maximum bubble size was
found at approximately 0.25 m s−1 (for ethanol drops) (Bouwhuis et al. 2012).
Generically, for drops or spheres falling at their terminal velocity of a few metres
per second, the impact thus takes place in the inertial regime, where the effect of
surface tension can thus be neglected when focusing on the air bubble entrapment.
It should be noted that surface tension will enter during the rupture of the air film,
which, however, appears to be on a different time scale. In Bouwhuis et al. (2012)
it was experimentally found that, in the inertial regime, the bubble volume was fixed
before the rupture of the air film.

In this paper, we analytically compute the initial deformations due to sphere
impact onto a liquid pool in the inertial regime, where the deflection of the liquid
is limited by its inertia rather than by its surface tension. In experiments, there is
generally not enough resolution to accurately detect these initial deformations, and
therefore we use numerical simulations, which also provide a bridge towards larger
deformations. By restricting ourselves to small deformations of the pool surface, we
obtain detailed spatiotemporal information on the deflection as well as the dependence
on experimental parameters. This provides a natural bridge between scaling theory,
which lacks detailed information on the structure of the interface deflection, and
profiles obtained by direct numerical simulations. Similar calculations were previously
performed by Yiantsios & Davis (1990) in the capillary regime, recovering the scaling
(1.2a,b). Hence, such a small-deformation theory gives an analytical foundation to
the scaling laws, as well as detailed predictions of the shape of the deformation.
Although the problem of a cushioning air layer has been solved by Wilson (1991) for
an ‘inertial’ air layer, a similar insightful similarity analysis for the inertial (liquid)
regime has not yet been attempted.

This paper is organized as follows. Section 2 starts with a dimensional analysis of
the problem and shows the limiting cases when the gas can be described as a potential
flow or as a viscous lubrication flow. This section also outlines the formalism based
on which the interface deformations are computed. In § 3 we present the results for
both viscous gas flow and potential gas flow. The analytical results are illustrated for
a representative case of impact on a pool of water, with a sphere of radius R= 1 mm
and velocity U = 5 m s−1, surrounded by air, as is typical in experiments (inertial
regime). Here, we also provide a detailed comparison of our results with numerical
simulations based on the boundary integral (BI) method, to validate our analysis and
to investigate when the results start to deviate from the small-deformation regime. In
§ 4 we conclude on the results in terms of air bubble entrapment.

2. Formulation
The geometry of the problem is sketched in figure 1: we consider a solid sphere

(radius R) moving downwards towards a pool with a velocity U (figure 1a). The
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velocity of the sphere during its fall is assumed to be constant, i.e. we neglect
the acceleration of gravity and the possible deceleration due to the gas flow. The
movement of the air induces an increase of the gas pressure at the bottom of the
sphere, which will then deflect the pool surface by a distance δ(r, t) (figure 1b). The
deformation δ is defined as positive when the pool deflects downwards. For as long
as the interface deflection is small with respect to the height of the gap, i.e. |δ| � h,
the problem can be solved by a perturbation analysis. In this section we first address
the problem by dimensional analysis, and then provide the linearized formalism that
allows computation of the spatiotemporal evolution of the deflection δ(r, t).

2.1. Dimensional analysis
Let us first consider the gas flow induced by the motion of the sphere. In the regime
where the height of the gap is much larger than R, the sphere does not experience
any influence of the pool. In this case, the Reynolds number of the gas flow is Reg=
ρgUR/ηg, where ρg is the density of air (1.204 kg m−3). However, as soon as the
gap height becomes small, h0/R � 1, the air flow will be oriented mainly in the
radial direction. As is typical for lubrication flows (Reynolds 1886), one then has to
consider a different Reynolds number which is obtained from the radial component
of the Navier Stokes equation. In terms of scaling laws this gives ρgu2

r/L∼ ηgur/h2
0,

where ur is the typical radial gas flow velocity and L=√Rh0 is the length scale in the
radial direction (Bouwhuis et al. 2012; Hicks et al. 2012; Mandre & Brenner 2012;
Klaseboer et al. 2014). Application of mass conservation on the air gives UL∼ urh0,
and after elimination of ur one thus finds the relevant Reynolds number Reg,lubr. =
ρgUh0/ηg. In the thin-gap regime, the relative influence of the viscosity and the inertia
of the gas thus involves the gap thickness h0 instead of the sphere radius R.

It is instructive to evaluate these parameters for typical experimental values, such as
spheres falling in air (ρg= 1.204 kg m−3, ηg= 1.82× 10−5 Pa s) with R= 1 mm and
U= 5 m s−1. The crossover from inertial to viscous gas flow, Reg,lubr.∼ 1, arises when
h0∼ 3 µm. This implies that there exists an ‘inertial thin-gap regime’, where h0/R< 1
and Reg,lubr.> 1 at the same time. Only for the final stages of the impact, h0 < 3 µm,
can the gas be described by a purely viscous flow. In the remainder of this paper,
we therefore consider a potential flow analysis during two parts of the trajectory: the
large-gap stage h0/R� 1 and the thin-gap stage h0/R� 1. The viscous flow is treated
only in the final stages of impact, for which h0/R� 1 and it is thus justified to resort
to lubrication theory. The various limits will be worked out separately in § 3.

The liquid pool is assumed to be a low-viscosity liquid and is treated for
small-amplitude deformations. These are essentially the same assumptions as for
the propagation of linear surface waves (Lamb 1957), where the amplitude is small
with respect to the length scales of the problem. We focus on the ‘inertial regime’
of impact, where the deformation is limited by the acceleration of the liquid and
not by the surface tension of the liquid–air interface. The influence of gravity will
also be neglected in the theory; the Froude number based on the impact parameters,
Fr=U2/(gR), is much larger than 1.

2.2. From gas pressure to interface deflection
The first step of the analysis is to compute the response of the liquid on a gas pressure
Pg for the different limiting cases (viscous/inertial gas), as discussed above. Since we
set out to compute the initial deformation, we can compute Pg assuming that the liquid
pool is undeformed – the influence of a finite deflection is a correction at higher order
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in δ/h. We assume axisymmetry and solve the equations in cylindrical coordinates
(r, z) (see figure 1). The gas pressure will provide the boundary condition at the liquid
pool, generating a liquid flow as described by the linearized Euler equation:

∂v

∂t
=− 1

ρl
∇Pl, (2.1)

where v(r, z, t) is the velocity field in the liquid and Pl(r, z, t) is the pressure inside
the liquid. The advection terms in the Euler equation are quadratic in velocity and
therefore of higher order in δ/h, in analogy to the wave analysis (Lamb 1957).
Without surface tension, the gas pressure provides the boundary condition for the
liquid pressure,

Pl(r, z=−δ, t)' Pl(r, z= 0, t)= Pg(r, t), (2.2)

with the first equality again due to taking into account only leading order terms in
δ/h. The resulting deflection is given by the kinematic boundary condition:

∂δ

∂t
=−vz|z=−δ − vr|z=−δ ∂δ

∂r
'−vz|z=0, (2.3)

where vz|z=0 is the vertical velocity at the pool surface (to the lowest order in δ/h).
Substitution of condition (2.3) into the vertical component of (2.1) gives

∂2δ

∂t2
= 1
ρl

∂Pl

∂z

∣∣∣∣
z=0

. (2.4)

The above equation shows that in order to compute δ(r, t), one requires a spatial
derivative ∂Pl/∂z. Hence, we need to find the pressure distribution inside the liquid
that is induced by Pg at the free surface. For an incompressible liquid this can be
achieved by taking the divergence of (2.1), which due to ∇ · v= 0 reduces to ∇2Pl= 0.
As the boundary condition is axisymmetric, it is natural to express the pressure as the
axisymmetric solution of the Laplace equation:

Pl(r, z, t)=
∫ ∞

0
P̂g(k, t)J0(kr)ekzk dk, (2.5)

where the integration variable k is the wavenumber, and J0(kr) is the Bessel function
of the first kind with order ν = 0. The amplitude of the ‘modes’ J0(kr)ekz is given by
the Hankel transform of order 0 of the gas pressure Pg(r, t),

P̂g(k, t)=
∫ ∞

0
Pg(r, t)J0(kr)r dr. (2.6)

Substitution of this expression for the pressure into (2.4) gives

∂2δ

∂t2
(r, t)=

∫ ∞
0

P̂g(k, t)
ρl

J0(kr)k2 dk, (2.7)

where we note an additional factor k coming from the derivative of ∂Pl/∂z.
The basic procedure for determining ∂2δ/∂t2 from the gas pressure is now clear:

one needs to find the Hankel transform of the gas pressure (2.6), subsequently take
the derivative of the result in the z direction and evaluate the expression at z = 0,
and finally take the inverse Hankel transform (2.7). In the following section we will
perform these steps for the gas pressure computed in the limits of Stokes gas flow
and inviscid gas flow.
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3. Results
3.1. Stokes gas flow

We now turn to the Stokes flow in the lubrication limit, which is valid for Reg,lubr.� 1
and h0/R�1. In the case of vanishing interface deformation, the gas pressure building
up below an impacting sphere becomes (Davis, Serayssol & Hinch 1986; Yiantsios &
Davis 1990)

Pg(r, t)= 3ηgUR

h2
0

(
1+ r2

2Rh0

)2 =
3ηgU

R

(
R
L

)4

F1(u). (3.1)

Here, we factorized the result in dimensional parameters, determining the magnitude
of the pressure and a dimensionless function F1(u) that contains the spatial
information on the pressure profile. For this, we introduced L(t) = √Rh0(t) as the
relevant radial length scale, while the geometrical function reads

F1(u)= 1(
1+ 1

2 u2
)2 ; u(t)= r

L(t)
. (3.2a,b)

It should be noted that in the limit of vanishing thickness h0, the pressure tends
to diverge, Pg ∼ h−2

0 , while the width of the peak becomes increasingly small, L ∼
h1/2

0 . These singular tendencies are regularized when the deformations of the surface
become comparable to h0, but still set the characteristic scales for the enclosed bubble
volume.

We continue the analysis by inserting the gas pressure profile in (2.7), and find a
closed form expression:

∂2δ

∂t2
(r, t)= 3ηgU

ρlRL

(
R
L

)4

G1(u). (3.3)

Once more we recognize a dimensional prefactor that determines the scale of the
acceleration, while the time dependence follows from L(t) and u(t), and the spatial
dependence through G1(u). The additional factor 1/L appearing in (3.3) originates
from the scaling u = r/L. The spatial similarity profile is G1(u) =

∫∞
0 F̂1J0(ku)k2 dk,

where F̂1(k) is the Hankel transform of F1(u). The analytical expression for F̂1(k) is
found to be

F̂1(k)=
√

2kK1(
√

2k), (3.4)

where K1(k) is the modified Bessel function of the second kind with order ν= 1, and
the analytical expression for G1(u) is

G1(u)=
−8K

(
u√

u2 + 2

)
− E

(
u√

u2 + 2

)
+ 14E

(
u√

u2 + 2

)
(
u2 + 2

)5/2 . (3.5)

K and E are the complete elliptic integrals of the first and second kind respectively.
To illustrate and validate our analysis, we compare the predicted profiles with

the results obtained by BI simulations (Oguz & Prosperetti 1993; Pozrikidis 1997;
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FIGURE 2. (Colour online) Deflection of the pool interface for Stokes gas flow; R=1 mm,
U = 5 m s−1, starting height of the (bottom of the) sphere hs = 0.5 mm, current height
h0 = 0.1 mm. (a) Global view of the sphere and pool contours, (b) the pool deflection δ
as a function of r and (c) ∂2δ/∂t2 as a function of r. The solid red lines result from the
BI simulation. The theoretical result from (3.3) has been superimposed in (c) (blue dots).
Note the difference in scales on the vertical axes of (a) and (b). The BI results agree
perfectly with the theoretical predictions, as long as |δ| � h.

Bergmann et al. 2009). The simulation method is the same as in Bouwhuis et al.
(2012, 2013): the liquid within the pool is described as a potential flow, while the
pressure along the pool surface is explicitly calculated from the viscous lubrication
equation for the gas flow. To be able to confirm our theoretical predictions in the
inertial regime without the influences of surface tension and hydrostatics (which are
both very small, as mentioned in the introduction), γ and g are equal to zero in our
simulations. In the limit of small deflection, the simulations should thus recover (3.3).

Figure 2(a) shows the configuration on the scale of the sphere, for typical impact
parameters for a sphere in air (R= 1 mm, U= 5 m s−1). The interface deflection δ is
shown in figure 2(b), at the moment when the sphere is at a height h0= 100 µm. At
this time, δ� h0�R, for which we expect agreement between the BI results and our
prediction from (3.3). Figure 2(c) shows the acceleration ∂2δ/∂t2 versus r. The solid
line is the result from the BI simulations and indeed gives perfect agreement with the
prediction, represented by the dots.

The actual deflection profile δ(r, t) cannot be integrated explicitly from (3.3), due to
the time dependence through L and u. However, we can derive δ|r=0, the deflection of
the pool surface on the axis, which does not involve L(t). Using that ∂/∂t=−U∂/∂h0,



510 W. Bouwhuis, M. H. W. Hendrix, D. van der Meer and J. H. Snoeijer

10–4

10–6

10–8

10–10

10–310–510–710–9

Theory
BI

2

1

FIGURE 3. (Colour online) Deflection of the pool interface on the axis, δr=0, plotted
against h0(t), for Stokes gas flow; R= 1 mm, U = 5 m s−1, starting height hs = 0.5 mm.
The solid red line is the result from the BI simulation. The theoretical result from (3.6)
has been superimposed. After a start-up regime for large h0, the deflection δ|r=0 converges
towards a −1/2 power law. The BI results agree perfectly with the theoretical predictions,
until δ and h0 become of comparable magnitude, pointed out by the crossing with the
solid grey line δ|r=0= h0. At that moment δr=0 saturates to a constant value, which is the
‘dimple height’ Hd of Bouwhuis et al. (2012).

we find
∂2δ|r=0

∂h2
0
= 3ηgG1(0)

ρlUR2

(
R
L

)5

= 3ηgG1(0)
ρlUR2

(
R
h0

)5/2

, (3.6)

where (3.5) implies G1(0) = (3/8)
√

2π. The solution of (3.6) for δ|r=0 is subject to
start-up effects as long as h0 ∼ hs, where hs is the initial height of the gap. If we let
the initial height hs→∞, we find

δ|r=0 ' 3
2

√
2π

ηg

ρlU

(
R
h0

)1/2

. (3.7)

This predicts that the central height increases dramatically when h0 decreases, as δ∼
h−1/2

0 . Figure 3 shows the BI result for δ|r=0 against h0 (solid line), superimposed with
the theoretical predictions (dashed line, taking into account the finite initial height hs).
Indeed, as soon as h0� hs, δ|r=0 converges to a −1/2 power law. As expected, the
simulation results depart from the analytical prediction when δ∼ h0 (indicated by the
solid grey line) and the lubrication approximation ceases to be valid. At this point, the
deflection converges to a constant, which will be the final dimple height Hd. As stated
in the introduction, this will determine the dimple volume, and thus the entrapped air
bubble volume, independently of the air film rupture process.

The current analysis provides a rigorous foundation for the scaling results obtained
previously in Hicks & Purvis (2011), Marston et al. (2011), Bouwhuis et al. (2012),
Hicks et al. (2012) and Mandre & Brenner (2012). There, the ‘dimple height’ Hd
was observed to approach a constant value during the final stages of the impact.
Figure 3 shows that this height can be estimated from δr=0 ∼ h0 ∼ Hd. Using (3.7),
this immediately gives

Hd ∼ ηgR1/2

ρlUH1/2
d

∼ RSt−2/3, (3.8)
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where St=ρlUR/ηg is the Stokes number. The corresponding volume of the entrapped
bubble volume then scales as

Vb ∼ L2Hd ∼ RH2
d ∼ R3St−4/3, (3.9)

where we use the common estimate that L sets the lateral scale of the bubble. These
are precisely the scaling predictions for the inertial regime (for Stokes gas flow),
where the assumptions Hd ∼ δ and L ∼ (HdR)1/2 were further validated (Hicks &
Purvis 2011; Marston et al. 2011; Bouwhuis et al. 2012; Hicks et al. 2012; Mandre
& Brenner 2012; Tran et al. 2013).

3.2. Potential gas flow
As described in § 2.1, the inertial phase of the impacting sphere consists of two
distinct stages: the large-gap regime h0�R and the thin-gap regime h0�R. Below, we
separately treat both limiting cases analytically. We furthermore perform a numerical
potential flow calculation for the full range of h0/R, to validate the analysis and to
show how the two stages are connected.

3.2.1. Large-gap regime: h0� R
When the sphere is very far from the pool surface, the flow field can be described

by the well-known potential flow field around a moving sphere of radius R. The
introduction of the (undeformed) pool surface, however, requires that the gas velocity
has no vertical component, or vz|z=0 = 0. This boundary condition can be satisfied
using the ‘method of images’, corresponding to two approaching spheres having
radius R with approaching velocity U towards a mirroring horizontal line (z= 0). By
applying the superposition of the potentials for the two moving spheres, one obtains
the potential

φ(r, z, t)= UR3

2

[
(z− R− h0)(

r2 + (z− R− h0)
2)3/2 −

z+ R+ h0(
r2 + (z+ R+ h0)

2)3/2

]
. (3.10)

It is important to realize that the introduction of the second moving sphere not only
influences the flow around z = 0, but also gives a small unwanted velocity on the
boundary of the original sphere. In the limit of very large gaps, R/h0 � 1, this
correction becomes negligible and (3.10) gives the asymptotically correct potential.

We now extract the gas pressure profile on the level of the pool surface, z= 0, by
applying the unsteady Bernoulli equation:

Pg(r, t)= ρgU2

[(
R
ζ

)3

F2(u)+ 9
2

(
R
ζ

)6

F3(u)

]
' ρgU2

(
R
ζ

)3

F2(u). (3.11)

Here, ζ (t)=R+ h0(t)=R+ hs−Ut, the radial direction is scaled as u(t)= r/ζ , while
the spatial profiles are

F2(u)= 2− u2

(1+ u2)5/2
, (3.12)

F3(u)= −u2

(1+ u2)5
. (3.13)
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FIGURE 4. (Colour online) Deflection of the pool interface for potential gas flow in the
limit h0� R; R = 1 mm, U = 5 m s−1, h0 = hs = 10 mm (thus, h0/R = 10). (a) Global
view plot of the sphere and pool contours, (b) δ against r and (c) ∂2δ/∂t2 against r. The
solid red lines result from the BI simulation. The theoretical result from (3.14) has been
superimposed in (c) (blue dots). Note the difference in scales on the vertical axes of (a)
and (b). The BI results are in good agreement with the theoretical predictions, until h0/R
becomes of order 1.

Since (3.10) and (3.11) are only valid for h0 � R, we only keep the dominant first
term in (3.11). It should be noted that the width of the pressure peak is now set by
the scale ζ = h0 + R. This can be contrasted with the width in the thin-gap limit,
L=√Rh0, which becomes very narrow.

Next, from (3.11) we can compute the induced acceleration profile using (2.7):

∂2δ

∂t2
(r, t)= ρgU2

ρlζ

(
R
ζ

)3

G2(u). (3.14)

One recognizes a dimensional prefactor that is separated from the spatiotemporal
dependence. The function G2(u) =

∫∞
0 F̂2J0(ku)k2 dk is the spatial similarity profile,

where F̂2(k) is the Hankel transform of F2(u). For G2(u) we did not find any
analytical expression, but one can numerically calculate the given integral
(cf. figure 4).
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Once again, we can analytically compute the behaviour of the central deflection,
δ|r=0:

∂2δ|r=0

∂h2
0
= ρgG2(0)

ρlR

(
R
ζ

)4

. (3.15)

Recalling that ∂/∂h0 = ∂/∂ζ and ζ → 2R for h0→ R, this implies that the final δr=0
scales as ρgR/ρl. In contrast to the result for viscous flow, the typical deformation
versus h0 depends only on the density ratio ρg/ρl, and not on the impact velocity.
While the density ratio is typically small, we anticipate that the resulting deflection for
a millimetre-sized sphere can be a few microns. This is actually comparable to typical
deflections in the viscous lubrication phase. However, the pool is not deformed locally
over a small width

√
Rh0, but over the scale of the entire sphere, and therefore it will

be of little consequence for the formation of the dimple and the size of the entrapped
air bubble.

3.2.2. Thin-gap regime: h0� R
In the inertial thin-gap limit, the gas is squeezed out mainly in the radial direction.

To predict the pressure profile for this stage of the impact, we use the depth-integrated
continuity equation (Snoeijer, Brunet & Eggers 2009; Bouwhuis et al. 2013)

∂h
∂t
+ 1

r
∂

∂r
(rhur)= 0, (3.16)

where ur(r, t) is the height-averaged radial gas velocity in the gap. Assuming a
plug flow that does not depend on the z coordinate, this average simply gives
ur(r, t) = ur(r, t). This analytical description is similar to that of Wilson (1991),
who also studied cushioning air layers at solid–liquid impact in the inertial thin-gap
regime, although in 2D Cartesian coordinates, for general shapes of the impacting
solid. In the present case, the bottom of the impacting solid sphere can be described
as h= h0(t)+ r2/(2R), and thus ∂h/∂t= ∂h0/∂t=−U. Hence, we can integrate (3.16)
to find

ur = ur = Ur

2h0

(
1+ r2

2Rh0

) . (3.17)

The velocity profile (3.17) has a local maximum at r=√2Rh0, and vanishes for r= 0
and r=∞. Substitution of the profile into the radial component of the Euler equation
and integration over r gives the gas pressure:

Pg(r, t)= ρgU2R
2h0


1+ r2

4Rh0(
1+ r2

2Rh0

)2

= ρgU2

2

(
R
L

)2

F4(u), (3.18)

with L(t)=√Rh0(t), u(t)= r/L and

F4(u)= 1+ 1
4 u2(

1+ 1
2 u2
)2 . (3.19)

It should be noted that the geometry of the thin gap again gives rise to a highly
localized pressure profile of width

√
Rh0. The gas pressure again tends to diverge as
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h0 → 0, but more slowly than in the viscous case: the inertial gas pressure in the
thin-gap limit is proportional to 1/h0, in contrast to the more singular scaling for the
viscous gas flow scenario, 1/h2

0.
From (2.7) we deduce the pool surface acceleration

∂2δ

∂t2
(r, t)= ρgU2

2ρlL

(
R
L

)2

G4(u), (3.20)

where G4(u) =
∫∞

0 F̂4J0(ku)k2 dk, with F̂4(k) the Hankel transform of F4(u). At the
origin r= 0, this reduces to

∂2δ|r=0

∂h2
0
= ρgG4(0)

2ρlR

(
R
L

)3

. (3.21)

Just like in the case of the large-gap regime, the central deflection has no dependence
on the impact velocity. Solving gives δr=0∼ h1/2

0 + integration constants. From this we
conclude that in the inertial thin-gap limit, the pressure tends to diverge for h0→ 0,
but the deflection δ converges. Contrarily to the final stages in the case of viscous gas
flow, the inertial gas pressure is not sufficiently singular to induce a strongly enhanced
deflection. The integration constants depend on the full history of the impact process,
which thus involves the dynamics during the preceding large-gap regime. To predict
the actual deflection during the final stages of sphere impact, it is thus not sufficient to
consider the large-gap or thin-gap regime of the potential gas flow problem; numerical
simulation of the full impact process over all h0/R is required.

3.2.3. Numerical simulations
Simulation of the potential gas flow impact process using the BI technique calls

for a different approach with respect to the case of Stokes gas flow. The reason
is that we require the gas pressure over the full range of gap thickness, including
h0 ∼ R, for which no analytical solution for the gas pressure is available that can
serve as a boundary condition for the liquid pool. As a consequence, the gas phase
must also be computed numerically, which we achieve using the BI code. We thus
need to run two separate simulations. The process is started by a BI simulation of a
solid sphere impacting towards an undeformed surface, with a potential gas flow in
between. From this simulation, the gas pressure profile along the pool surface (z= 0)
is extracted. In the second BI simulation, this pressure is applied on a deformable
pool surface, from which we eventually determine the resulting pool deflections. This
is again a valid method as long as δ/h� 1. The pressure data are transmitted from
the first simulation to the second simulation through an extensive data file. It should
be noted that in performing two separate simulations, one needs to take into account
the different length scales during the impact process (for h0 = 10 mm→ 100 nm),
implying very sensitive local node spacings and time dependences. This was achieved
by adapting the node spacing and time steps to ensure convergence of the numerical
results.

Figures 4(a) and 4(b) show the configuration on the length scale of the sphere
and the interface deflection δ(r, t) respectively, for R = 1 mm, U = 5 m s−1 and
h0 = hs = 10 mm (i.e. the large-gap regime). Figure 4(c) shows the acceleration
profile at the corresponding time, and it is observed to agree very well with the
asymptotic result of (3.14) (blue dots). The very small difference between the BI
result and the theoretical predictions can be explained by the fact that hs/R = 10,
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FIGURE 5. (Colour online) Inertial gas flow in the thin-gap limit. Theoretical prediction
(red dashed line) and BI gas flow simulation result (blue solid line) of the velocity (a)
and pressure (b) profiles within the gas; R= 1 mm, U= 5 m s−1, hs= h0= 100 nm (thus,
h0/R = 10−4). We find very good agreement between the theoretical predictions and the
BI results.

implying an expected difference of approximately 10% between the theory and the
numerical simulations. We remark that the corresponding deformation (figure 4b) is
very small, as we look at the very initial deformations in the start-up regime. The
requirement h0/R � 1 implies a large initial gap height, which, for the parameter
values chosen in Fig. 4 to validate the asymptotics, corresponds to non-physically
small deflections. The sensitiveness of the very small pool deflection gave rise to
switch-off of the smoothing procedure normally used within the simulations (Oguz
& Prosperetti 1993), such that a tiny instability remained visible around the axis,
r = 0. We confirmed that this instability has a numerical origin and that it does not
influence the result on the scale of the deformations. The thin-gap regime is analysed
in figure 5. We again find very good agreement between the analytical gas velocity
profile (a) and the pressure profile (b) and the BI results (here, h0 = 100 nm).

The crossover between the large-gap and thin-gap limits is illustrated in figure 6,
showing the gas pressure on the symmetry axis r = 0. As predicted, in the limit
h0/R� 1 the pressure calculated by BI (blue line) equals 2ρgU2(R/ζ )3 (red dashed
line), and in the limit h0/R � 1 the pressure equals ρgU2R/(2h0) (green dashed
line). This confirms the validity of the analytical approaches. Finally, we investigate
the deflection of the pool that is induced by the numerically obtained gas pressure.
Figure 7 shows the deflection at r = 0, the inertial (gas) counterpart of figure 3. As
expected, δr=0 deviates from the large-gap prediction in the small-gap regime, though
the deviation is not very large. This means that, despite the fact that the gas pressure
tends to diverge for h0 → 0, the influence of the inertial thin-gap limit remains
relatively small. For this particular example, it enhances the deflection by less than a
factor of 2. This is also one of the reasons why we do not show the corresponding
theoretical profile for ∂2δ/∂t2, which in principle could again be directly calculated
from the pressure profile. A second reason is that, in the numerical simulations, the
very small gap height of 100 nm needs a very high local node density on both the
pool surface and the sphere surface; the difference in length scales of R and h0
is four decades, which is very challenging. This necessitates very small time steps
to be able to calculate a fair second derivative of the deflection profile in time. In
addition, the pressure along the pool surface needs to be extracted from a prior
solid-sphere-on-solid-surface simulation (through an extensive data file), which makes
the discretization more complicated.
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FIGURE 6. (Colour online) Behaviour of the gas pressure on the axis, Pr=0, plotted against
the gap height, h0(t), for potential gas flow; R= 1 mm, U = 5 m s−1, hs = 10 mm. The
red dashed line is the theoretical prediction in the regime h0� R; the green dashed line
is the theoretical prediction in the regime h0� R. The black dashed line points out the
crossover h0=R. The BI gas flow simulation result (blue solid line) indeed follows these
predicted behaviours in the corresponding regimes, with a crossover at h0 ∼ R.
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FIGURE 7. (Colour online) Deflection of the pool interface on the axis, δr=0, plotted
against the gap height, h0(t), for potential gas flow; R = 1 mm, U = 5 m s−1, hs =
10 mm. The solid red line is the result from the BI solid sphere on liquid pool
simulations (§ 3.2.3). The theoretical result from (3.15) for the large-gap regime has
been superimposed (blue dashed line); δ|r=0 saturates to a constant. The BI results agree
perfectly with the large-gap predictions in the regime h0� R. In the regime h0� R, δr=0
deviates from this prediction, but the difference is relatively small. The dashed grey line
points out the crossover h0 = R; the solid grey line points out δ|r=0 = h0.

The large-gap prediction for the final δr=0 is thus satisfactory, and we conclude
with the following scaling law for the resulting dimple height Hd for the inertial gas
scenario as was concluded from (3.15):

Hd ∼ R
ρg

ρl
. (3.22)
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This dimple height is independent of the impact velocity of the sphere. Since the
surface deformation is the sum of the deformations in both the large-gap and the
thin-gap limit, it is unclear what the correct radial and axial length scales are that
lead to the volume of the pinched bubble.

4. Conclusion

We performed a perturbation analysis to investigate the initial deflections of a
liquid surface, induced by the approach of an impacting solid sphere. The analysis
assumed that the deflection is limited by the inertia of the liquid pool (i.e. not by its
surface tension) and we considered two natural limits for the surrounding medium:
Stokes gas flow and potential gas flow. We obtained a quantitative prediction for the
pool surface deflection, which was validated numerically, and recovered previously
proposed scaling laws for bubble entrapment.

While the ‘cushioning’ of an inertial gas layer had been analysed before (Wilson
1991), most recent work on liquid or solid impact assumes a viscous gas layer.
Surprisingly, our analysis reveals that inertial and viscous cushioning both lead to a
pool deflection of the order of 1 µm, for typical experimental conditions. However,
the Stokes gas pressure tends to diverge strongly for h0 → 0, much more strongly
than during the inertial gas phase. In addition, this viscous lubrication pressure profile
is very localized, while most of the inertial deflection is generated during the initial
phase where the pool deflection is spread over the entire width of the sphere. This
explains why the experimental results on bubble entrapment are in close agreement
with the scaling law (3.9) (Tran et al. 2013), while in addition (3.8) was validated
for the case of a liquid drop impact on a solid (Hicks & Purvis 2011; Marston et al.
2011; Bouwhuis et al. 2012; Hicks et al. 2012; Mandre & Brenner 2012; Tran et al.
2013); all these results are based on the viscous lubrication regime.

For completeness, we will summarize the possible scenarios for impact of a sphere
onto a pool, which can be achieved for different experimental parameters. Assuming
an initially high Reynolds number based on the size of the impacting object R, the
dynamics will exhibit two different types of crossover: a geometric crossover based
on the relative thickness of the gap, h/R, and a crossover from inertial to viscous
gas flow. The order in which these crossovers occur depends on the parameters of
the problem. In our numerical examples we assumed that one first reaches the thin-
gap regime, before the lubrication Reynolds number (based on the gap thickness h)
becomes smaller than unity. This order can be reversed for impact at smaller velocities
or for a sphere sinking in a more viscous medium. In that case, however, one needs
to bear in mind that the influence of the pool surface tension will become more
important, corresponding to the capillary impact regime. In this case, the thin film
potentially has time to drain out before a bubble is formed, making the entrapment
process more complex (Klaseboer et al. 2000; Yoon et al. 2005).

In this work, we have elaborated on the impact of a solid sphere on a liquid surface.
Similar perturbation analysis can be performed for drop impact on a solid, or drop
impact on a pool, although the details will be different. This explains why the same
scaling laws are observed in all these cases.
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