
J. Fluid Mech. (2016), vol. 789, pp. 708–725. c© Cambridge University Press 2016
doi:10.1017/jfm.2015.757

708

Universal mechanism for air entrainment
during liquid impact

Maurice H. W. Hendrix1,2,†, Wilco Bouwhuis1, Devaraj van der Meer1,
Detlef Lohse1 and Jacco H. Snoeijer1,3

1Physics of Fluids Group, Faculty of Science and Technology, Mesa+ Institute,
and J. M. Burgers Center for Fluid Dynamics, University of Twente,

7500 AE Enschede, The Netherlands
2Laboratory for Aero and Hydrodynamics, Delft University of Technology,

Leeghwaterstraat 21, NL-2628 CA Delft, The Netherlands
3Mesoscopic Transport Phenomena, Eindhoven University of Technology, Den Dolech 2,

5612 AZ Eindhoven, The Netherlands

(Received 23 January 2015; revised 13 July 2015; accepted 22 December 2015;
first published online 26 January 2016)

When a millimetre-sized liquid drop approaches a deep liquid pool, both the interface
of the drop and the pool deform before the drop touches the pool. The build-up
of air pressure prior to coalescence is responsible for this deformation. Due to this
deformation, air can be entrained at the bottom of the drop during the impact. We
quantify the amount of entrained air numerically, using the boundary integral method
for potential flow for the drop and the pool, coupled to viscous lubrication theory
for the air film that has to be squeezed out during impact. We compare our results
with various experimental data and find excellent agreement for the amount of air that
is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a
pool is numerically investigated and the air that is entrapped in this case also matches
with available experimental data. In both cases of drop and sphere impact onto a pool
the numerical air bubble volume Vb is found to be in agreement with the theoretical
scaling Vb/Vdrop/sphere∼ St−4/3, where St is the Stokes number. This is the same scaling
as has been found for drop impact onto a solid surface in previous research. This
implies a universal mechanism for air entrainment for these different impact scenarios,
which has been suggested in recent experimental work, but is now further elucidated
with numerical results.

Key words: drops and bubbles, lubrication theory, thin films

1. Introduction
The impact of a drop or a solid sphere onto a liquid pool can encompass various

types of air entrainment. One possibility is that air is entrained at the top of the
impacting object when the crater that is created during impact collapses, see for
example Oguz & Prosperetti (1990), Pumphrey & Elmore (1990), Wang, Kuan &
Tsai (2013) and Chen & Guo (2014). Another type of air entrainment may occur
at the bottom of the impacting object: the thin air film that is squeezed out at the

† Email address for correspondence: m.h.hendrix@gmail.com

mailto:m.h.hendrix@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.757&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.757&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.757&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.757&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.757&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.757&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.757&domain=pdf


Universal mechanism for air entrainment during liquid impact 709

Air

AirSolid Drop

Drop

SolidLiquid poolLiquid pool

Air Air

Air
bubble

(a) (b) (c)

Air
bubble

Air
bubble

FIGURE 1. (Colour online) Air bubble entrapment for different impact scenarios. Bubbles
and deformations are not drawn to scale. (a) Rigid sphere impact onto a pool. The pool
deforms due to an increase in air pressure right under the sphere before it touches the
pool, which results in an entrapped air bubble. (b) Drop impact onto a pool. Not only
the pool, but also the drop, consists of a deformable interface. As a result, the increased
air pressure deforms both the pool and the drop and an air bubble is entrapped. (c) Drop
impact onto a solid. Here also, a local increase in air pressure deforms the drop before
it touches the solid and results in an entrapped air bubble.

impact zone is accompanied by a pressure increase that deforms the interface of
the liquid before the impacting object touches the pool, which may result in air
entrapment (Thoroddsen, Etoh & Takehara 2003; Thoroddsen et al. 2005; Marston,
Vakarelski & Thoroddsen 2011; Hicks et al. 2012; Tran et al. 2013). The early
stages of deformations can be described analytically (Bouwhuis et al. 2015). In the
case where the impacting object is a drop, instead of a single entrapped bubble, a
collection of microscopic bubbles may also be entrapped, which can create intriguing
morphologies (Thoroddsen et al. 2012). This is also referred to as Mesler entrainment
(Esmailizadeh & Mesler 1986; Pumphrey & Elmore 1990). The same mechanism that
is responsible for bubble entrapment at the bottom of an impacting object on a pool
holds for air entrapment at the bottom of an impacting drop onto a solid (van Dam
& Le Clerc 2004; Hicks & Purvis 2010; Mani, Mandre & Brenner 2010; Bouwhuis
et al. 2012). In fact, the initial geometries of the problems are identical; see figure 1
in which the different impact scenarios and air entrapment have been depicted. We
also refer to figure 5 of Tran et al. (2013), who first worked out this analogy.

Previously, air bubble entrapment for drop impact onto a solid surface has been
quantified experimentally, theoretically and numerically (Mandre, Mani & Brenner
2009; Hicks & Purvis 2010, 2011; Mani et al. 2010; Bouwhuis et al. 2012). If
the effect of surface tension can be neglected, we can consider the inertial regime
(Bouwhuis et al. 2012), for which the following scaling for the entrapped air bubble
volume was found:

Vb/Vdrop ∼ St−4/3. (1.1)

Here, Vb/Vdrop is the air bubble volume normalized by the drop volume and St is
the Stokes number, which is defined as St≡ ρlRU/ηg, where ρl is the liquid density,
R is the droplet radius, U is its impact velocity and ηg is the viscosity of the
surrounding gas, in this case air. The Stokes number represents the competing effects
of the viscous force of the draining air film and the inertial force of the liquid,
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which ultimately determine the air bubble volume. The same scaling was found
experimentally for impact of a sphere onto a pool (Marston et al. 2011) and a drop
onto a pool (Tran et al. 2013). When surface tension effects become important, the
scaling must be modified to include the effect of the Laplace pressure as we move
towards the capillary regime (Bouwhuis et al. 2012). In recent work, the connection
between the capillary and inertial regimes has been captured in a unifying theory
(Klaseboer, Manica & Chan 2014).

In this paper, we try to capture the mechanism of air entrapment during impact
onto a deep pool numerically. We will employ a boundary integral method (BIM) for
potential flow describing the liquid phase coupled to viscous lubrication theory for the
draining microscopic air film. The advantage of using a BIM becomes evident when
the interface of the impacting object comes close to the pool and one has to resolve
the microscopic air layer together with the macroscopic liquid scale. This difference in
length scales can be a thousandfold for the case of a millimetre-sized drop impacting
onto a pool squeezing out an air film with a typical thickness of micrometres. In
fact, the difference in length scales in the final stages of impact diverges to infinity
as the drop is about to coalesce with the pool. Using a BIM guarantees excellent
interface representation, since all variables such as liquid velocity and pressure are
defined at the interface. At the same time, the computational cost is modest, since the
BIM allows the potential problem to be solved only at the boundaries of the liquid
domain: quantities in interior points can be calculated optionally as a function of the
solution at the boundary. To achieve the same accurate interface representation and
solve the full Navier–Stokes equations, using for example a volume-of-fluid method
(see for example Thoraval et al. (2012), Guo et al. (2014)), one would require a much
larger computational cost.

In § 2, we explain the theoretical framework together with the numerical method.
In § 3, we will present the results of numerical simulation: we will identify details
of the pressure development in the air film and deformation of the interfaces at the
impact zone. The results of the numerical model will be compared with available
results regarding the entrapped bubble volume from multiple experimental works and
will be compared with the scaling law equation (1.1). We conclude with § 4 in which
suggestions for further research are discussed.

2. Theory
2.1. Dimensional analysis and numerical method

Since the deformation of the interfaces responsible for air entrapment exhibits axial
symmetry, we make use of an axisymmetric framework throughout the paper. The
Reynolds number of the liquid drops we model, which is defined as Rel ≡ ρlRU/ηl,
is assumed to be large, Rel � 1. Here, ρl and ηl are respectively the density and
the dynamic viscosity of the liquid, U is the impact velocity and R is the radius of
the drop. The flow can thus be regarded as irrotational, that is ∇ × u = 0. Under
the additional constraint of incompressible flow inside the drop this allows the liquid
dynamics to be modelled with a harmonic function φ, to which the velocity field u
is related through

u=∇φ. (2.1)

The fact that the velocity potential φ obeys the Laplace equation ∇
2φ = 0 is used

to efficiently solve the potential problem, and thus the dynamics of the liquid, using
the BIM. We use a BIM based on codes that are described in detail in Oguz &
Prosperetti (1993) and Gekle & Gordillo (2011). While the Reynolds number of the
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FIGURE 2. (Colour online) (a) Schematic of drop impact onto a pool. The methods used
are indicated in the figure: both the liquid domains are modelled with potential flow, while
the air layer is described with Stokes flow. The grey arrows indicate that the flow of the
air film is coupled to the dynamics of the liquid domains, and vice versa. (b) Definition
of the (n, s)-coordinate system, where s is aligned along the drop curve and n is the unit
normal with respect to the drop.

drop is large, the Reynolds number of the thin gaseous air layer, Reg ≡ ρgHdU/ηg,
is typically small. Here, ρg is the gas density and Hd is the air film thickness in
the centre of the film which is referred to as the dimple height. When inserting
typical parameters, ρg is of order 1, Hd is of order 10−6, U is of order 1 and ηg

is of order 10−5. This results in Reg being of the order of 10−1, which justifies the
assumption. The length scale characterizing the air layer in the lateral extension of
the air film is denoted by L, see figure 2(a). As shown in Bouwhuis et al. (2012),
Hd� L, which in combination with the low Reynolds number of the gas allows the
film to be described with viscous lubrication theory, see for example Leal (1992). For
droplets impacting with a higher speed well outside the parameter range currently
considered, lubrication theory should be extended to include the effect of inertia of
the gas. The dimensionless group reflecting the presence of air is the Stokes number
St ≡ ρlRU/ηg, which compares the viscous force of the air layer with the inertial
force in the drop. This number is relevant for describing dimple formation, since, for
high enough impact velocity U, this process is determined by two competing forces:
the force of the viscous air layer trying to deform the drop in the centre and the
opposing inertial force of the drop, which must be slowed down locally in order to
form a dimple. Additional dimensionless numbers incorporating the surface tension γ
are the Weber number We and the capillary number Ca based on the gas properties.
Summarizing, we thus have the following dimensionless parameters:

Rel ≡ ρlRU
ηl

, Reg ≡ ρgHdU
ηg

, St≡ ρlRU
ηg

, We≡ ρlRU2

γ
, Ca≡ We

St
. (2.2a−e)

The impact of a liquid drop onto a pool of the same liquid and the impact of a rigid
sphere onto a liquid pool can be described with the same dimensionless numbers.
As the initial geometries of the problems are identical, the difference lies in the
deformability of the object, which is zero in the case of the solid. The two effective
control parameters that we will use here in our theoretical framework are St and We.
In this work, the depth of the pool is considered to be infinite. In the case where the
thickness of the pool is finite, the dynamics of the pool may be altered due to the
presence of a solid boundary at the bottom of the pool. For the impact onto a liquid
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film with finite thickness we refer the reader to Korobkin, Ellis & Smith (2008), in
which the impact onto a wetted solid is discussed.

In figure 2(a), an illustration of the impact of a drop onto a pool, together with
the method used, is shown. As is clear from this figure, the coupling between the
dynamics of the air layer and the dynamics of the liquid is essential since the two
liquid domains feel each other through the pressure build-up in the viscous air layer.
The lubrication pressure Pg acts on the liquid surface and appears in the unsteady
Bernoulli equation which serves as a dynamic boundary condition in the BIM applied
at the liquid surface, see also Bouwhuis et al. (2012):(

∂φ

∂t
+ 1

2
|∇φ|2

)
=− γ

ρl
κ(s, t)− Pg(s, t)

ρl
. (2.3)

Here, Pg is the pressure in excess of the ambient pressure, due to lubrication.
The curvature of the interface is represented by κ(s, t), which is a function of the
curvilinear coordinate s, which follows the liquid surface and time t. It should be
noted that unlike Bouwhuis et al. (2012) we do not include gravitation, to make sure
that the impact speed of the impacting droplet stays constant. The small deformation
of the pool justifies the assumption of neglecting the pressure due to hydrostatic
gradients. As we have two liquid domains, two separate boundary integral equations
are solved. We take the width of the pool large enough to approach the dynamics of
an infinite liquid pool. In this case, a width of 4.5 times the drop radius is found
to be sufficient. We focus on quantifying the amount of entrapped air by integrating
the enclosed air pocket up to the moment the air layer reaches a physical minimum
thickness of 0.4 µm. At this point the volume of the enclosed air has converged
and a subsequent rupture of the air film will prevent further drainage, which results
in an entrapped air bubble (Bouwhuis et al. 2012). As we focus on the dynamics
just prior to rupture we can make use of an axisymmetric framework. In Hicks et al.
(2012), a similar approach was used to predict the radius of the entrapped bubble that
occurs when a solid sphere approaches a liquid free surface. We restrict ourselves
to the inertial regime (Bouwhuis et al. 2012) for which experimental results (Tran
et al. 2013) are available for a direct comparison. Since the air layer continually
deforms and translates during the impact, lubrication equations have been developed
in a moving coordinate system that is aligned with the interface of the drop. These
equations will be derived in the next section.

2.2. Lubrication in a moving and tilted coordinate system
In this section we develop an expression for the pressure Pg in the air film based
on lubrication theory in a moving (n, s)-coordinate system that is aligned along the
drop surface; see the sketch in figure 2. The reason for doing this (rather than just
using the standard (r, z)-coordinate system) is that especially for the drop onto pool
impact, the moving (n, s)-coordinate system is not necessarily oriented like the (r, z)-
coordinate system and therefore only the first guarantees an accurate description of the
draining air film. In appendix A a case is described that shows the difference between
lubrication calculated in the two coordinate systems. The drop surface is taken as
a reference, and the curvilinear coordinate s is defined along the drop, starting at
the axis of symmetry. At some large radial coordinate s∞ we assume atmospheric
pressure. The coordinate perpendicular to s is defined to be n. The gap thickness
h(r, t) is defined as the length of the perpendicular line from the drop projected onto
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the liquid pool. The two surfaces in the impact zone are assumed to be nearly parallel
(|∂sh| � 1), so we can apply lubrication theory.

It can be shown (see appendix B) that the continuity equation in this new (n, s)-
coordinate system reads

ur

r
+ ∂sus + ∂nun = 0. (2.4)

At the interface of the liquid pool (n = h) we know that the fluid particles have to
move with the interface. This is mathematically described with the kinematic boundary
condition

∂th+ (us∂sh)|n=h = un|n=h − un|n=0. (2.5)

Here, ∂th is the time derivative of h. We now integrate (2.4) along the gap thickness
h and obtain ∫ h

0

ur

r
dn+

∫ h

0
∂sus dn=−

∫ h

0
∂nun dn= un|n=0 − un|n=h. (2.6)

Using the Leibniz integral rule for the second integral on the left-hand side we find∫ h

0

ur

r
dn+ ∂s

∫ h

0
us dn− (us ∂sh)|n=h = un|n=0 − un|n=h. (2.7)

We now use the kinematic boundary condition formulated in (2.5) for the third term
on the left-hand side to obtain∫ h

0

ur

r
dn+ ∂s

∫ h

0
us dn+ ∂th− un|n=h + un|n=0 = un|n=0 − un|n=h. (2.8)

Cancelling the terms un|n=h and un|n=0 on both sides gives∫ h

0

ur

r
dn+ ∂s

∫ h

0
us dn+ ∂th= 0. (2.9)

We still have to describe ur within the new (s, n)-coordinate system. Therefore, we
substitute ur = un cos θ − us sin θ in the equation above to obtain∫ h

0

1
r

un cos θ dn−
∫ h

0

1
r

us sin θ dn+ ∂s

∫ h

0
us dn+ ∂th= 0. (2.10)

We assume that the main flow of the air that is squeezed out from the gap is along
the s coordinate, which implies that un is relatively small, so we neglect the first term.
The second term is an integral with respect to n containing the variable r. This radial
coordinate r across h is a function of n: r= n cos θ + c(s). Here, c(s) is the value of
r at the drop surface (n= 0) for some coordinate s. We thus substitute this expression
for r into (2.10) and neglect the first term to find

−
∫ h

0

sin θ
n cos θ + c(s)

us dn+ ∂s

∫ h

0
us dn+ ∂th= 0. (2.11)
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2.2.1. Flow profile within the air film
As has been previously described, the Reynolds number of the thin air film is small,

Reg� 1, and the geometry of the problem, Hd�L, allows us to use lubrication theory.
In the (n, s)-coordinate system, the Stokes equations can then be reduced to

∂sPg = ηg∂
2
n us. (2.12)

We can integrate (2.12) twice with respect to n, employing a no-slip boundary
condition at the drop surface (us =Ud at n= 0) as well as at the surface of the pool
(us =Up at n= h):

us =
(
(Up −Ud)

n
h
+Ud

)
+ 1

2ηg
∂sPg(n2 − nh). (2.13)

The first term of (2.13) can be associated with Couette flow, caused by the movement
of the interfaces. The terms Up and Ud can be extracted by differentiating the potential
φ with respect to the tangential direction of the liquid surface. The second term can
be associated with Poiseuille flow, which is driven by the pressure gradient, see also
Klaseboer et al. (2000). Substituting this expression for us in our equation for mass
conservation, (2.11), we obtain

−
∫ h

0

sin θ
n cos θ + c

[(
(Up −Ud)

n
h
+Ud

)
+ 1

2ηg
∂s(n2 − nh)

]
dn

+ ∂s

∫ h

0

[(
(Up −Ud)

n
h
+Ud

)
+ 1

2ηg
∂sPg(n2 − nh)

]
dn+ ∂th= 0. (2.14)

In the first integral we deal with a prefactor sin θ/(n cos θ + c). When taking the
geometry of the problem into account we note that n cos θ � c. We can thus write
sin θ/(n cos θ + c)≈ sin θ/c. Performing the integrals of (2.14) under this assumption
yields

−sin θ
c

(
h
2

(
Up +Ud

)− h3

12ηg
∂sPg

)
+ ∂s

(
h
2

(
Up +Ud

)− h3

12ηg
∂sPg

)
+ ∂th= 0. (2.15)

If we define G(s) ≡ (h/2(Up + Ud) − (h3/12ηg)∂sPg) we can transform the above
equation into a first-order inhomogeneous linear ordinary differential equation (ODE)
for G(s):

Ġ(s)− a(s)G(s)= f (s). (2.16)

Here, a(s) and f (s) are known functions of s:

a(s)= sin θ
c(s)

, (2.17)

f (s)=−∂th. (2.18)

2.2.2. Solving the first-order inhomogeneous ODE for G(s)
Equation (2.16) can be solved with the help of an integrating factor I, defined as

I(s) ≡ e−
∫

a(s) ds. Using the boundary condition G(s) = 0 for s = 0, because we have
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zero pressure gradient in the centre of symmetry, and also zero tangential velocities,
we can multiply (2.16) with I(s) and solve for G(s):

G(s)= 1
I(s)

(∫ s

0
I(s̃)f (s̃) ds̃

)
, (2.19)

with I(s)= e−
∫ s

0 a(s̃) ds̃.
We can now substitute G(s)≡ (h/2(Up + Ud)− (h3/12ηg)∂sPg) back into (2.19) to

obtain an equation for ∂sPg:

∂sPg =−12ηg

h3

(
1

I(s)

(∫ s

0
I(s̃)f (s̃) ds̃

)
− h

2

(
Up +Ud

))
. (2.20)

We note that we have to evaluate two numerical integrals to calculate ∂sPg. In order
to find the pressure Pg(s), we integrate (2.20) using atmospheric pressure for some
large value for s∞ well outside the thin air gap as a boundary value. As a check of
our analysis we now orientate the (n, s)-coordinate system in such a way that s= r,
to recover the lubrication equation in the conventional (r, z)-coordinate system. In that
case, we have θ =−π/2, and we can write for a(s)

a(s= r)= sin θ
r
=−1

r
. (2.21)

The integrating factor I now becomes

I(s= r)= e−
∫ r

0 a(r̃) dr̃ = eln r = r. (2.22)

Substituting (2.22) into (2.20), using the proposition s= r and setting Ub = 0 and
Ud = 0, we can now write (2.20) as

∂rPg =−12ηg

h3

(
1

I(r)

(∫ r

0
I(r̃)f (r̃) dr̃

)
− h

2
(Ub +Ud)

)
= 12ηg

h3

(
1
r

(∫ r

0
r̃∂th dr̃

))
.

(2.23)
We check by inspection that this (2.23) is the equation for the radial pressure

gradient for viscous lubrication theory in the conventional (r, z)-coordinate system
(Bouwhuis et al. 2013), which gives a consistency check for our analysis. This was
also numerically verified.

3. Results

In this section, simulation results will be discussed, starting with § 3.1 in which
the drop impact onto a pool will be treated. The interface deformations and pressure
development in the viscous air layer will be quantified. In § 3.2, we will focus on
rigid sphere impact onto a pool. For both impact scenarios we will quantify the size
of the air bubble that is entrapped and directly compare with various experimental
results (Marston et al. 2011; Bouwhuis et al. 2012; Tran et al. 2013). In § 3.3,
we will compare the dynamics of both impact scenarios and identify symmetrical
behaviour.
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FIGURE 3. (Colour online) (a–h) Drop impact onto a liquid pool: (a,e) t=0, (b,f ) t=0.13,
(c,g) t= 0.15, (d,h) t= 0.17. Note the different length scales for the r-axis and z-axis in
the shape plots. The impact speed is U= 0.42 m s−1 and the drop radius is R= 0.95 mm.
The density and surface tension of the liquid are respectively ρ = 916 kg m−3 and γ =
0.020 N m−1. These impact parameters correspond to St = 2.0× 104 and We= 7.7. The
simulation starts at time t = 0 ms at a separation of hr=0 = 50 µm. Due to the approach
of the drop, the excess air pressure Pg will increase and acts on both the drop and the
liquid pool (t= 0.13 ms). At the final stage (t= 0.17 ms) the minimum separation of the
interfaces reaches 0.4 µm and the simulation is stopped. The bubble volume Vb can thus
be determined. (i–k) Part of the simulation domain with detailed snapshots of the air film
at t= 0.17 ms. In (k), the actual node distribution around the smallest separation point can
be inspected. This is the most refined distribution of computational nodes that is used. For
the region outside the gap a coarser node distribution is sufficient.

3.1. Drop impact onto a pool
Figure 3(a–h) displays a typical result for drop impact onto a pool. The results are
expressed in dimensional form to match the experimental conditions of the work of
Tran et al. (2013), with which the numerical results in this work will be compared.
In figure 3(a) corresponding to t = 0 ms, the initial condition of the simulation at
the impact zone is shown. An initial separation of h0 = 50 µm is used. Convergence
tests regarding the initial release height have been conducted, and an initial separation
of h0 = 50 µm was found to be appropriate for the lubrication pressure to be still
negligible at this distance for the parameter range that is of interest in this study.
At t = 0.13 ms (figure 3b) it can be seen that the pool and the drop experience the
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increased air pressure and thus the interfaces deform. In figure 3( f ), the increase in
pressure is indeed visible. At t= 0.15 ms (figure 3c) the drop is getting closer to the
pool, and the interfaces have been further deformed. It can also be noted that the
pressure maximum corresponds to the location where the separation between the drop
and the pool is smallest. The location of smallest separation is now not located in
the centre at r = 0 anymore. This behaviour is typical for impact events involving a
free surface and has been experimentally observed for, e.g., drop impact onto a pool
(Thoroddsen et al. 2012; Tran et al. 2013), drop impact onto a solid surface (van der
Veen et al. 2012), sphere impact onto a pool (Marston et al. 2011) and bubble impact
onto a wall in a liquid tank (Hendrix et al. 2012). In figure 3(d) at t= 0.17 ms, we
observe that the two interfaces are very close together, having a minimum separation
of 0.4 µm.

We note that the interfaces up to the final stage of impact are very well resolved,
see figure 3(i–k) in which figure 3(d) at t= 0.17 ms is shown on various scales while
keeping the same length scale for both axes. In figure 3(i), a macroscopic view of the
simulation domain is shown. In figure 3( j), the impact zone is selected and magnified.
The slender geometry of the microscopic air film can be noted. In figure 3(k), the
region of closest separation is magnified. Indeed, the interfaces are very close together,
the minimum separation is 0.4 µm. The computational nodes used for discretization of
the surface are also shown in this final figure. An adaptive grid on the fluid surface
allows for local refinement at the region of closest separation, which results in the
total number of nodes being only of order 100, while capturing both the microscopic
dynamics at the impact zone and the large-scale motion of the millimetre-sized drop.
It should be noted that the slanted orientation of the free surfaces in figure 3(i–k)
justifies the need to use a description in terms of the (s, n)- rather than the (r, z)-
coordinate system.

We further note from figure 3(d) that a microscopic air film finds itself trapped
between the drop and the pool. It is this entrapped air that constitutes the air bubble
that is dragged into the liquid when the air film ruptures at the thinnest point and
breaks the axisymmetry of the problem. In this work, we do not attempt to simulate
the complex rupture process of the air film itself, which is ultimately determined
by surface chemistry, see for example Saylor & Bounds (2012). Instead, we focus
on the dynamics up to the rupture point, which is taken to happen at a rupture
thickness of 0.4 µm. At this point, the volume of the entrained air has converged
and can thus be determined, see figure 3(d). This procedure is in line with previous
research (Bouwhuis et al. 2012), where experimentally the volume of the air pocket
just before rupture was indeed found to be identical to the volume of the entrapped
bubble. In Thoroddsen et al. (2012), the final thickness of the air film is estimated to
be of the order of ∼0.2 µm. The final thickness that is reached during an experiment
depends on the type of fluid and is sensitive to experimental conditions, e.g. how
clean the fluid is (Saylor & Bounds 2012). Here, we choose to stick to a minimum
thickness consistent with Bouwhuis et al. (2012), which is 0.4 µm. In appendix C,
a figure is included which shows that the volume of the air bubble that can be
identified numerically has indeed converged for a minimum thickness of 0.4 µm by
also including the bubble volumes calculated for a minimum thickness of 0.2 µm.

3.2. Rigid sphere impact onto a pool
The impact of a sphere onto a pool prior to coalescence is similar to the case of
a drop impacting on a pool, except that in the case of an impacting sphere the
deformability of the impacting object is zero. This scenario has been simulated by
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FIGURE 4. (Colour online) Rigid sphere impact onto a pool: (a,e) t = 0, (b,f ) t = 0.12,
(c,g) t = 0.13, (d,h) t = 0.15 ms. The impact speed is U = 0.42 m s−1 and the radius is
R=0.95 mm. The density and surface tension of the fluid are respectively ρ=916 kg m−3

and γ =0.020 N m−1. These impact parameters correspond to St=2.0×104 and We=7.7.

letting an undeformable sphere approach the pool. The same equations are solved as
described in § 2, except that no BIM is needed for the impacting sphere since the
interface of the sphere is fixed. The result is depicted in figure 4. Just as in the case
of drop impact onto a pool, a microscopic air bubble is entrapped, see figure 4(d). As
can be seen by inspection, the air bubble has a similar shape, but its size is smaller
than in the case of drop impact onto the pool, as can be inferred from a comparison
with figure 3(d).

The size of the air bubble can be quantified from the numerical simulation and
is compared for both drop impact and sphere impact onto a pool with various
experimental results in figure 5(a). We see that the numerical results for both drop
and sphere impact onto a pool are in quantitative agreement with experimental work.
We note that the numerical results show that the air bubble volume is indeed larger
when a drop instead of a sphere impacts onto a pool for all values of St, which
is supported by the experiments of Tran et al. (2013). Furthermore, we observe
that the numerical results are in agreement with the scaling law presented in (1.1),
Vb/Vdrop ∼ St−4/3. As experiments have shown, in this regime, the viscosity of the
liquid is not important for the final bubble volume that is entrapped, see Marston et al.
(2011) and Tran et al. (2013), which is again confirmed by the current modelling
technique which captures the essential physics that determines the air bubble volume:
a potential flow calculation that does not involve liquid viscosity coupled to viscous
lubrication theory for the intervening air layer.

3.3. Deformations of interfaces: symmetrical behaviour
We will now further investigate the fact that the bubble volume for drop impact onto
a pool is larger compared with the case where we deal with only one deformable
interface during impact, as is the case with rigid sphere impact onto a pool. In
figure 6, a closer inspection of the drop impact onto a pool is depicted. In this figure,
we track the relative deformation of both the pool and the drop, denoted by δdrop
and δpool respectively. Here, δdrop is defined as the deformation of the drop relative
to an undeformed sphere impacting with constant speed U, and δpool is defined as
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FIGURE 5. (Colour online) Figure adapted from Tran et al. (2013). Boundary integral
method results are superimposed as yellow symbols. (a) Various experimental data for
the normalized bubble volume Vb/Vsphere/drop are shown. Excellent quantitative agreement
was found with numerical results. (b) The data, both numerical and experimental, were
found to collapse onto one single curve by normalizing Vb as Vb/(nVsphere/drop), with n the
number of free interfaces involved during impact. This number is 2 instead of 1 in the
case of drop impact onto a liquid pool.

the deformation of the pool relative to the horizon z= 0. Interestingly, we note that
both interface deformations behave identically. One may expect that two deformable
interfaces that react similarly to an external pressure will deform in an identical way.
It should be noted, however, that the upper domain (drop) and the lower domain
(pool) do not have the same unperturbed geometry, due to the radius of curvature
of the drop. Since both media respond identically to the pressure pulse, the weak
curvature with respect to the width of the localized pressure has a negligible influence:
on the scale of the pressure pulse, both domains are essentially flat. We therefore
expect to recover a symmetric response in the upper and lower domains. To illustrate
this further, we compute the kinetic energy and the velocity inside the drop and
the pool using a technique described in Sun et al. (2014) to evaluate quantities
close to the interface which need special attention as the singular behaviour of the
Green’s function in the boundary integral equation becomes apparent for these points.
Figure 7(a,c,e,g) shows the result in the frame of the pool. To highlight the symmetry,
we also evaluate these quantities in a frame moving at a speed U/2 in an upward
direction, which results in a frame of reference in which both the drop and the pool
move with a speed U/2 towards each other. Indeed, the velocity fields and kinetic
energies are now identically distributed, see figure 7(b,d,f,h).
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FIGURE 6. (Colour online) Drop impact onto a pool with a corresponding plot of the
relative deformation δ of both the pool and the drop; (d) shows the definition of δ:
(a,e,i) t = 0, (b,f,j) t = 0.13, (c,g,k) t = 0.15, (d,h,l) t = 0.17 ms. We observe excellent
overlap between the relative deformations, which is emphasized in (i–l) where ∆ =
δdrop − δpool, the difference between the two relative deformations, is shown. The same
impact conditions as for the case described in figure 3 are used: the impact speed is
U = 0.42 m s−1 and the radius is R = 0.95 mm. The density and surface tension of
the liquid are respectively ρ = 916 kg m−3 and γ = 0.020 N m−1, which correspond to
St= 2.0× 104 and We= 7.7.

This implies that there will be a larger entrapped air bubble compared with the case
where only one of the interfaces is able to deform. To quantify this hypothesis we
compare the bubble sizes of drop and sphere impact onto a pool and find a factor 2
difference, see figure 5(b). Here, half of the air bubble volume of drop impact onto a
pool was found to collapse onto the experimental and numerical results incorporating
only one deformable interface, i.e. sphere impact onto a pool but also drop impact
onto a solid. Tran et al. (2013) took another approach to collapse the data of bubble
volumes of drop impact onto a pool by correcting the corresponding impact St number
by a factor 2, which also collapses the data. In the present work, it is shown that an
approach based on considering the number of deformable interfaces (either 1 or 2)
can also serve to obtain a unifying view on the air bubble entrapment.

4. Conclusion
In this work, air entrapment during liquid drop and rigid sphere impact onto a

deep liquid pool has been numerically investigated using a BIM for potential flow for
the liquid phase coupled to the viscous lubrication approximation for the subphase
air that is squeezed out during impact. Excellent agreement with experimental work
was found when comparing the amount of air that is entrained during impact. When
considering drop impact onto a pool, both liquid interfaces were found to deform
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FIGURE 7. (Colour online) Kinetic energy monitoring during drop impact onto a pool,
with impact parameters as described in figure 3, for times (a,b) t = 0, (c,d) t = 0.13,
(e,f ) t=0.15, (g,h) t=0.17 ms. (a,c,e,g) In the left half, the kinetic energy K is grey-scale
coded: black is zero kinetic energy; white is maximum kinetic energy in the system, which
is K = ρU2/2. (b,d,f,h) The kinetic energy is recalculated in a moving reference frame
moving upwards at U/2. This results in a frame of reference in which both the pool and
the drop move with a speed of U/2 towards each other. Again, the left half shows the
kinetic energy. We observe a symmetric behaviour, which supports the hypothesis that the
pool and the drop react in a symmetric way to the local pressure increase.

identically relative to their undeformed shape. This leads to an explanation as to why
bubble volumes in the case of drop impact onto a pool were found to be twice the
size of those that are found, both experimentally and numerically, in impact events
involving only one deformable interface, that is rigid sphere impact onto a pool and
drop impact onto a solid. In this study, compressibility effects of the air have been
neglected. It can be expected that at higher impact velocity compressibility of the
intervening air will be important, see for example Hicks & Purvis (2011). In addition,
the current modelling technique is limited to an axisymmetric 2D framework. To
account for 3D impact problems, for which experimental data are starting to emerge
(van der Veen et al. 2014), the modelling technique needs to be extended to 3D.
With a 3D model oblique collisions can also be investigated.
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Appendix A. Comparison of the conventional (r, z)-coordinate system with the
moving (n, s)-coordinate system

The advantage of the moving (n, s)-coordinate system to calculate the lubrication
pressure becomes evident when the interfaces start to deform and the thin air film
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FIGURE 8. Drop impact onto a liquid pool: (a,e) t = 0.30, (b,f ) t = 0.50, (c,g) t = 1.50,
(d,h) t=3.00 ms. The impact speed is U=0.14 m s−1 and the drop radius is R=0.95 mm.
The density and surface tension of the liquid are respectively ρ = 916 kg m−3 and γ =
0.020 N m−1. These impact parameters correspond to St = 6.7 × 103 and We = 0.85.
(a–d) The macroscopic droplet shape together with the pool shape is shown. The solid
line corresponds to calculations made in the moving (n, s)-coordinate system. The dashed
line shows the result for the same case with the only difference being that lubrication is
now calculated in a conventional (r, z)-coordinate system. (e–h) To illustrate the different
behaviour of the two approaches, the corresponding film thicknesses are shown. It can be
seen that in the final stage of impact, the draining of the film behaves differently.

is not aligned with the (r, z)-coordinate system anymore. To illustrate this, we
selected a case of drop impact onto a pool as shown and described in figure 8. In
figure 8(a–d), we can see by inspection that the two different lubrication methods
yield similar results from a macroscopic point of view. However, when focusing on
the film thickness h between the two interfaces, shown in figure 8(e–h), the difference
between the two methods becomes apparent. We note that in the first stages of impact
(up to t= 0.50 ms), the air film is still aligned with the (r, z)-coordinate system, and
the two lubrication methods yield similar results. However, in the final stages of
impact, the drop sinks deeper into the pool and the air film is not aligned anymore
with the (r, z)-coordinate system. The (r, z)-coordinate system therefore is now no
longer adequate, which is reflected in the thinning behaviour which starts to differ
from the results obtained with the (n, s)-coordinate system that moves with the drop.
In the final stage (t=3.00 ms), the conventional (r, z)-coordinate system clearly shows
a wrong film profile, as the minimum gap thickness is now located at the centre r= 0,
while it should be located off-centre, as shown by many experiments (Hicks et al.
2012; Thoroddsen et al. 2012; van der Veen et al. 2012; Tran et al. 2013). This
underpins the need for an appropriate moving (n, s)-coordinate system, from which
the conventional (r, z)-coordinate system is a special case that is recovered when
the lubrication gap is aligned with the (r, z)-axes. While upfront it may not be clear
whether the interfaces deform to such an extent that a moving coordinate system
is needed, it will take into account possible deformations and guarantees accurate
lubrication calculations in any scenario.
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FIGURE 9. Sphere impact onto a pool, with impact parameters as described in figure 4.
The bubble volume calculated for different rupture thicknesses hmin is shown. At a rupture
thickness hmin of 0.4 µm the air bubble volume is converged, as taking the rupture
thickness twice as small with a value of 0.2 µm does not significantly alter the result.

Appendix B. Continuity in curvilinear coordinates
To derive (2.4) in an (n, s)-coordinate system that moves along with the drop

surface, see figure 2, we start from the continuity equation in axisymmetric (r, z)
coordinates:

ur

r
+ ∂ur

∂r
+ ∂uz

∂z
= 0. (B 1)

We now want to write the last two terms of the left-hand side of (B 1) in terms of
the (n, s)-coordinate system, that is
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The two coordinate systems are related as follows (see also figure 2):

ds=−dr sin θ + dz cos θ, (B 3)
dn= dr cos θ + dz sin θ. (B 4)

Using the relation above we can write (B 2) as
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)
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We now have to express ur and uz as functions of (s, n), that is

ur(n, s)= un(n, s) cos θ − us(n, s) sin θ, (B 6)
uz(n, s)= un(n, s) sin θ + us(n, s) cos θ. (B 7)

Substituting the above expressions for ur and uz into (B 5) and simplifying, we find
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∂n
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∂s
. (B 8)
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Appendix C. Sensitivity of the rupture thickness to the entrapped bubble volume
The physics of the rupture of the air film, which is dependent on the surface

chemistry of the impacting object and the pool, is not captured in the numerical
model. As a result, a minimum thickness at which the film ruptures has to be
imposed, which is referred to as the rupture thickness. In this work, the rupture
thickness is taken to be 0.4 µm, which is consistent with Bouwhuis et al. (2012). In
figure 9, it is shown that the volume of the air bubble has already converged for this
value of the rupture thickness. Taking the rupture thickness twice as small at 0.2 µm
does not significantly change the amount of air trapped. We thus conclude that a
minimal rupture thickness of 0.4 µm suffices to describe the results in this work.
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