210 research outputs found

    Fitting additive Poisson models

    Get PDF
    This paper describes how to fit an additive Poisson model using standard software. It is illustrated with SAS code, but can be similarly used for other software packages

    Dynamic effects of smoking cessation on disease incidence, mortality and quality of life: The role of time since cessation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To support health policy makers in setting priorities, quantifying the potential effects of tobacco control on the burden of disease is useful. However, smoking is related to a variety of diseases and the dynamic effects of smoking cessation on the incidence of these diseases differ. Furthermore, many people who quit smoking relapse, most of them within a relatively short period.</p> <p>Methods</p> <p>In this paper, a method is presented for calculating the effects of smoking cessation interventions on disease incidence that allows to deal with relapse and the effect of time since quitting. A simulation model is described that links smoking to the incidence of 14 smoking related diseases. To demonstrate the model, health effects are estimated of two interventions in which part of current smokers in the Netherlands quits smoking.</p> <p>To illustrate the advantages of the model its results are compared with those of two simpler versions of the model. In one version we assumed no relapse after quitting and equal incidence rates for all former smokers. In the second version, incidence rates depend on time since cessation, but we assumed still no relapse after quitting.</p> <p>Results</p> <p>Not taking into account time since smoking cessation on disease incidence rates results in biased estimates of the effects of interventions. The immediate public health effects are overestimated, since the health risk of quitters immediately drops to the mean level of all former smokers. However, the long-term public health effects are underestimated since after longer periods of time the effects of past smoking disappear and so surviving quitters start to resemble never smokers. On balance, total health gains of smoking cessation are underestimated if one does not account for the effect of time since cessation on disease incidence rates. Not taking into account relapse of quitters overestimates health gains substantially.</p> <p>Conclusion</p> <p>The results show that simulation models are sensitive to assumptions made in specifying the model. The model should be specified carefully in accordance with the questions it is supposed to answer. If the aim of the model is to estimate effects of smoking cessation interventions on mortality and morbidity, one should include relapse of quitters and dependency on time since cessation of incidence rates of smoking-related chronic diseases. A drawback of such models is that data requirements are extensive.</p

    Co-occurrence of diabetes, myocardial infarction, stroke, and cancer: quantifying age patterns in the Dutch population using health survey data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high prevalence of chronic diseases in Western countries implies that the presence of multiple chronic diseases within one person is common. Especially at older ages, when the likelihood of having a chronic disease increases, the co-occurrence of distinct diseases will be encountered more frequently. The aim of this study was to estimate the age-specific prevalence of multimorbidity in the general population. In particular, we investigate to what extent specific pairs of diseases cluster within people and how this deviates from what is to be expected under the assumption of the independent occurrence of diseases (i.e., sheer coincidence).</p> <p>Methods</p> <p>We used data from a Dutch health survey to estimate the prevalence of pairs of chronic diseases specified by age. Diseases we focused on were diabetes, myocardial infarction, stroke, and cancer. Multinomial P-splines were fitted to the data to model the relation between age and disease status (single versus two diseases). To assess to what extent co-occurrence cannot be explained by independent occurrence, we estimated observed/expected co-occurrence ratios using predictions of the fitted regression models.</p> <p>Results</p> <p>Prevalence increased with age for all disease pairs. For all disease pairs, prevalence at most ages was much higher than is to be expected on the basis of coincidence. Observed/expected ratios of disease combinations decreased with age.</p> <p>Conclusion</p> <p>Common chronic diseases co-occur in one individual more frequently than is due to chance. In monitoring the occurrence of diseases among the population at large, such multimorbidity is insufficiently taken into account.</p

    Validating fatty acid intake as estimated by an FFQ : how does the 24 h recall perform as reference method compared with the duplicate portion?

    Get PDF
    Objective: To compare the performance of the commonly used 24 h recall (24hR) with the more distinct duplicate portion (DP) as reference method for validation of fatty acid intake estimated with an FFQ. Design: Intakes of SFA, MUFA, n-3 fatty acids and linoleic acid (LA) were estimated by chemical analysis of two DP and by on average five 24hR and two FFQ. Plasma n-3 fatty acids and LA were used to objectively compare ranking of individuals based on DP and 24hR. Multivariate measurement error models were used to estimate validity coefficients and attenuation factors for the FFQ with the DP and 24hR as reference methods. Setting: Wageningen, the Netherlands. Subjects: Ninety-two men and 106 women (aged 20–70 years). Results: Validity coefficients for the fatty acid estimates by the FFQ tended to be lower when using the DP as reference method compared with the 24hR. Attenuation factors for the FFQ tended to be slightly higher based on the DP than those based on the 24hR as reference method. Furthermore, when using plasma fatty acids as reference, the DP showed comparable to slightly better ranking of participants according to their intake of n-3 fatty acids (0·33) and n-3:LA (0·34) than the 24hR (0·22 and 0·24, respectively). Conclusions: The 24hR gives only slightly different results compared with the distinctive but less feasible DP, therefore use of the 24hR seems appropriate as the reference method for FFQ validation of fatty acid intake.</p

    Southeast of What? Reflections on SEALS\u27 Success

    Get PDF
    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model

    A hyperalgebraic proof of the isomorphism and isogeny theorems for reductive groups

    Get PDF
    textabstractWe examined whether specific input data and assumptions explain outcome differences in otherwise comparable health impact assessment models. Seven population health models estimating the impact of salt reduction on morbidity and mortality in western populations were compared on four sets of key features, their underlying assumptions and input data. Next, assumptions and input data were varied one by one in a default approach (the DYNAMO-HIA model) to examine how it influences the estimated health impact. Major differences in outcome were related to the size and shape of the dose-response relation between salt and blood pressure and blood pressure and disease. Modifying the effect sizes in the salt to health association resulted in the largest change in health impact estimates (33% lower), whereas other changes had less influence. Differences in health impact assessment model structure and input data may affect the health impact estimate. Therefore, clearly defined assumptions and transparent reporting for different models is crucial. However, the estimated impact of salt reduction was substantial in all of the models used, emphasizing the need for public health actions

    Potential health gains and health losses in eleven EU countries attainable through feasible prevalences of the life-style related risk factors alcohol, BMI, and smoking: a quantitative health impact assessment

    Get PDF
    Background: Influencing the life-style risk-factors alcohol, body mass index (BMI), and smoking is an European Union (EU) wide objective of public health policy. The population-level health effects of these risk-factors depend on population specific characteristics and are difficult to quantify without dynamic population health models. Methods: For eleven countries-approx. 80 % of the EU-27 population-we used evidence from the publicly available DYNAMO-HIA data-set. For each country the age- and sex-specific risk-factor prevalence and the incidence, prevalence, and excess mortality of nine chronic diseases are utilized; including the corresponding relative risks linking risk-factor exposure causally to disease incidence and all-cause mortality. Applying the DYNAMO-HIA tool, we dynamically project the country-wise potential health gains and losses using feasible, i.e. observed elsewhere, risk-factor prevalence rates as benchmarks. The effects of the 'worst practice', ' best practice', and the currently observed risk-factor prevalence on population health are quantified and expected changes in life expectancy, morbidity-free life years, disease cases, and cumulative mortality are reported. Results: Applying the best practice smoking prevalence yields the largest gains in life expectancy with 0.4 years for males and 0.3 year for females (approx. 332,950 and 274,200 deaths postponed, respectively) while the worst practice smoking prevalence also leads to the largest losses with 0.7 years for males and 0.9 year for females (approx. 609,400 and 710,550 lives lost, respectively). Comparing morbidity-free life years, the best practice smoking prevalence shows the highest gains for males with 0.4 years (342,800 less disease cases), whereas for females the best practice BMI prevalence yields the largest gains with 0.7 years (1,075,200 less disease cases). Conclusion: Smoking is still the risk-factor with the largest potential health gains. BMI, however, has comparatively large effects on morbidity. Future research should aim to improve knowledge of how policies can influence and shape individual and aggregated life-style-related risk-factor behavior

    Validity of absolute intake and nutrient density of protein, potassium, and sodium assessed by various dietary assessment methods:An exploratory study

    Get PDF
    It is suggested that nutrient densities are less affected by measurement errors than absolute intake estimates of dietary exposure. We compared the validity of absolute intakes and densities of protein (kJ from protein/total energy (kJ)), potassium, and sodium (potassium or sodium (in mg)/total energy (kJ)) assessed by different dietary assessment methods. For 69 Dutch subjects, two duplicate portions (DPs), five to fifteen 24-h dietary recalls (24 hRs, telephone-based and web-based) and two food frequency questionnaires (FFQs) were collected and compared to duplicate urinary biomarkers and one or two doubly labelled water measurements. Multivariate measurement error models were used to estimate validity coefficients (VCs) and attenuation factors (AFs). This research showed that group bias diminished for protein and sodium densities assessed by all methods as compared to the respective absolute intakes, but not for those of potassium. However, the VCs and AFs for the nutrient densities did not improve compared to absolute intakes for all four methods; except for the AF of sodium density (0.71) or the FFQ which was better than that of the absolute sodium intake (0.51). Thus, using nutrient densities rather than absolute intakes does not necessarily improve the performance of the DP, FFQ, or 24 hR.</p
    corecore